Standard

Synthesis and optical properties of heterogeneous film structure based on InP/InAsP/InP nanowires. / Khrebtov, A. I.; Kulagina, A. S.; Danilov, V. V.; Dragunova, A. S.; Kotlyar, K. P.; Reznik, R. R.; Cirlin, G. E.

в: Journal of Optical Technology (A Translation of Opticheskii Zhurnal), Том 89, № 5, 05.2022, стр. 298-301.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Khrebtov, AI, Kulagina, AS, Danilov, VV, Dragunova, AS, Kotlyar, KP, Reznik, RR & Cirlin, GE 2022, 'Synthesis and optical properties of heterogeneous film structure based on InP/InAsP/InP nanowires', Journal of Optical Technology (A Translation of Opticheskii Zhurnal), Том. 89, № 5, стр. 298-301. https://doi.org/10.1364/jot.89.000298

APA

Khrebtov, A. I., Kulagina, A. S., Danilov, V. V., Dragunova, A. S., Kotlyar, K. P., Reznik, R. R., & Cirlin, G. E. (2022). Synthesis and optical properties of heterogeneous film structure based on InP/InAsP/InP nanowires. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 89(5), 298-301. https://doi.org/10.1364/jot.89.000298

Vancouver

Khrebtov AI, Kulagina AS, Danilov VV, Dragunova AS, Kotlyar KP, Reznik RR и пр. Synthesis and optical properties of heterogeneous film structure based on InP/InAsP/InP nanowires. Journal of Optical Technology (A Translation of Opticheskii Zhurnal). 2022 Май;89(5):298-301. https://doi.org/10.1364/jot.89.000298

Author

Khrebtov, A. I. ; Kulagina, A. S. ; Danilov, V. V. ; Dragunova, A. S. ; Kotlyar, K. P. ; Reznik, R. R. ; Cirlin, G. E. / Synthesis and optical properties of heterogeneous film structure based on InP/InAsP/InP nanowires. в: Journal of Optical Technology (A Translation of Opticheskii Zhurnal). 2022 ; Том 89, № 5. стр. 298-301.

BibTeX

@article{4f73029d410547819d8534b158007f49,
title = "Synthesis and optical properties of heterogeneous film structure based on InP/InAsP/InP nanowires",
abstract = "Subject of study. The dependence of the photoluminescence of a flexible film structure, which is an array of InP/InAsP/InP nanowires incorporated into a polymerized trioctylphosphine oxide layer with CdSe/ZnS colloidal quantum dots, on the intensity of excitation in the near-infrared range at room temperature was investigated in this study. Method. Nanowires were synthesized on a Si (III) substrate by molecular beam epitaxy using a Riber Compact 21 setup. A polymerized film formed after application of a colloidal solution of trioctylphosphine oxide and CdSe/ZnS quantum dots in toluene on the substrate. This film could be easily detached from the substrate. A continuous Nd+3:yttrium lithium fluoride laser with a wavelength of 527 nm acted as an excitation source in spectral measurements. The emission power varied in the range of 15–100 mW. Main results. A method for fabrication of a flexible film structure comprising an array of semiconductor nanowires and colloidal quantum dots was demonstrated. A nonlinear dependence of the photoluminescence intensity on the intensity of exciting radiation was obtained. It was attributed to the light quenching effect. A mechanism for the increase in the photoluminescence intensity in the film structure is proposed. Practical significance. Considering the position of the maximum in the photoluminescence band in the vicinity of 1.3 µm, the proposed film heterostructure can be advantageous for integration with fiber-optic systems.",
author = "Khrebtov, {A. I.} and Kulagina, {A. S.} and Danilov, {V. V.} and Dragunova, {A. S.} and Kotlyar, {K. P.} and Reznik, {R. R.} and Cirlin, {G. E.}",
note = "Publisher Copyright: {\textcopyright} 2022 OSA - The Optical Society. All rights reserved.",
year = "2022",
month = may,
doi = "10.1364/jot.89.000298",
language = "English",
volume = "89",
pages = "298--301",
journal = "Journal of Optical Technology (A Translation of Opticheskii Zhurnal)",
issn = "1070-9762",
publisher = "The Optical Society",
number = "5",

}

RIS

TY - JOUR

T1 - Synthesis and optical properties of heterogeneous film structure based on InP/InAsP/InP nanowires

AU - Khrebtov, A. I.

AU - Kulagina, A. S.

AU - Danilov, V. V.

AU - Dragunova, A. S.

AU - Kotlyar, K. P.

AU - Reznik, R. R.

AU - Cirlin, G. E.

N1 - Publisher Copyright: © 2022 OSA - The Optical Society. All rights reserved.

PY - 2022/5

Y1 - 2022/5

N2 - Subject of study. The dependence of the photoluminescence of a flexible film structure, which is an array of InP/InAsP/InP nanowires incorporated into a polymerized trioctylphosphine oxide layer with CdSe/ZnS colloidal quantum dots, on the intensity of excitation in the near-infrared range at room temperature was investigated in this study. Method. Nanowires were synthesized on a Si (III) substrate by molecular beam epitaxy using a Riber Compact 21 setup. A polymerized film formed after application of a colloidal solution of trioctylphosphine oxide and CdSe/ZnS quantum dots in toluene on the substrate. This film could be easily detached from the substrate. A continuous Nd+3:yttrium lithium fluoride laser with a wavelength of 527 nm acted as an excitation source in spectral measurements. The emission power varied in the range of 15–100 mW. Main results. A method for fabrication of a flexible film structure comprising an array of semiconductor nanowires and colloidal quantum dots was demonstrated. A nonlinear dependence of the photoluminescence intensity on the intensity of exciting radiation was obtained. It was attributed to the light quenching effect. A mechanism for the increase in the photoluminescence intensity in the film structure is proposed. Practical significance. Considering the position of the maximum in the photoluminescence band in the vicinity of 1.3 µm, the proposed film heterostructure can be advantageous for integration with fiber-optic systems.

AB - Subject of study. The dependence of the photoluminescence of a flexible film structure, which is an array of InP/InAsP/InP nanowires incorporated into a polymerized trioctylphosphine oxide layer with CdSe/ZnS colloidal quantum dots, on the intensity of excitation in the near-infrared range at room temperature was investigated in this study. Method. Nanowires were synthesized on a Si (III) substrate by molecular beam epitaxy using a Riber Compact 21 setup. A polymerized film formed after application of a colloidal solution of trioctylphosphine oxide and CdSe/ZnS quantum dots in toluene on the substrate. This film could be easily detached from the substrate. A continuous Nd+3:yttrium lithium fluoride laser with a wavelength of 527 nm acted as an excitation source in spectral measurements. The emission power varied in the range of 15–100 mW. Main results. A method for fabrication of a flexible film structure comprising an array of semiconductor nanowires and colloidal quantum dots was demonstrated. A nonlinear dependence of the photoluminescence intensity on the intensity of exciting radiation was obtained. It was attributed to the light quenching effect. A mechanism for the increase in the photoluminescence intensity in the film structure is proposed. Practical significance. Considering the position of the maximum in the photoluminescence band in the vicinity of 1.3 µm, the proposed film heterostructure can be advantageous for integration with fiber-optic systems.

UR - http://www.scopus.com/inward/record.url?scp=85137150303&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/c448b1e6-8b34-3154-964d-7667cff821bf/

U2 - 10.1364/jot.89.000298

DO - 10.1364/jot.89.000298

M3 - Article

AN - SCOPUS:85137150303

VL - 89

SP - 298

EP - 301

JO - Journal of Optical Technology (A Translation of Opticheskii Zhurnal)

JF - Journal of Optical Technology (A Translation of Opticheskii Zhurnal)

SN - 1070-9762

IS - 5

ER -

ID: 99878924