Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
In this paper we are concerned with upper bounds for the Hausdorff and fractal dimensions of negatively invariant sets of maps on Riemannian manifolds. We consider a special class of non-injective maps, for which we introduce a factor describing the "degree of non-injectivity". This factor can be included in the Hausdorff dimension estimates of Douady-Oesterlé type [2, 7, 10] and in fractal dimension estimates [5, 13, 15] in order to weaken the condition to the singular values of the tangent map. In a number of cases we get better upper dimension estimates.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 207-223 |
Число страниц | 17 |
Журнал | Zeitschrift fur Analysis und ihre Anwendung |
Том | 17 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 1998 |
ID: 73407486