DOI

In this paper we are concerned with upper bounds for the Hausdorff and fractal dimensions of negatively invariant sets of maps on Riemannian manifolds. We consider a special class of non-injective maps, for which we introduce a factor describing the "degree of non-injectivity". This factor can be included in the Hausdorff dimension estimates of Douady-Oesterlé type [2, 7, 10] and in fractal dimension estimates [5, 13, 15] in order to weaken the condition to the singular values of the tangent map. In a number of cases we get better upper dimension estimates.

Язык оригиналаанглийский
Страницы (с-по)207-223
Число страниц17
ЖурналZeitschrift fur Analysis und ihre Anwendung
Том17
Номер выпуска1
DOI
СостояниеОпубликовано - 1998

    Предметные области Scopus

  • Анализ
  • Прикладная математика

ID: 73407486