DOI

In this paper we are concerned with upper bounds for the Hausdorff and fractal dimensions of negatively invariant sets of maps on Riemannian manifolds. We consider a special class of non-injective maps, for which we introduce a factor describing the "degree of non-injectivity". This factor can be included in the Hausdorff dimension estimates of Douady-Oesterlé type [2, 7, 10] and in fractal dimension estimates [5, 13, 15] in order to weaken the condition to the singular values of the tangent map. In a number of cases we get better upper dimension estimates.

Original languageEnglish
Pages (from-to)207-223
Number of pages17
JournalZeitschrift fur Analysis und ihre Anwendung
Volume17
Issue number1
DOIs
StatePublished - 1998

    Scopus subject areas

  • Analysis
  • Applied Mathematics

    Research areas

  • Fractal dimension estimates, Hausdorff dimension estimates, Non-injective maps, Singular values, Tangent map

ID: 73407486