Standard

Hausdorff and fractal dimension estimates for invariant sets of non-injective maps. / Boichenko, V. A.; Franz, A.; Leonov, G. A.; Reitmann, V.

в: Zeitschrift fur Analysis und ihre Anwendung, Том 17, № 1, 1998, стр. 207-223.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Boichenko, VA, Franz, A, Leonov, GA & Reitmann, V 1998, 'Hausdorff and fractal dimension estimates for invariant sets of non-injective maps', Zeitschrift fur Analysis und ihre Anwendung, Том. 17, № 1, стр. 207-223. https://doi.org/10.4171/ZAA/816

APA

Boichenko, V. A., Franz, A., Leonov, G. A., & Reitmann, V. (1998). Hausdorff and fractal dimension estimates for invariant sets of non-injective maps. Zeitschrift fur Analysis und ihre Anwendung, 17(1), 207-223. https://doi.org/10.4171/ZAA/816

Vancouver

Author

Boichenko, V. A. ; Franz, A. ; Leonov, G. A. ; Reitmann, V. / Hausdorff and fractal dimension estimates for invariant sets of non-injective maps. в: Zeitschrift fur Analysis und ihre Anwendung. 1998 ; Том 17, № 1. стр. 207-223.

BibTeX

@article{819d950595ca4cd8a22c4e9a9089c5cd,
title = "Hausdorff and fractal dimension estimates for invariant sets of non-injective maps",
abstract = "In this paper we are concerned with upper bounds for the Hausdorff and fractal dimensions of negatively invariant sets of maps on Riemannian manifolds. We consider a special class of non-injective maps, for which we introduce a factor describing the {"}degree of non-injectivity{"}. This factor can be included in the Hausdorff dimension estimates of Douady-Oesterl{\'e} type [2, 7, 10] and in fractal dimension estimates [5, 13, 15] in order to weaken the condition to the singular values of the tangent map. In a number of cases we get better upper dimension estimates.",
keywords = "Fractal dimension estimates, Hausdorff dimension estimates, Non-injective maps, Singular values, Tangent map",
author = "Boichenko, {V. A.} and A. Franz and Leonov, {G. A.} and V. Reitmann",
note = "Copyright: Copyright 2017 Elsevier B.V., All rights reserved.",
year = "1998",
doi = "10.4171/ZAA/816",
language = "English",
volume = "17",
pages = "207--223",
journal = "Zeitschrift fur Analysis und ihre Anwendungen",
issn = "0232-2064",
publisher = "Heldermann Verlag",
number = "1",

}

RIS

TY - JOUR

T1 - Hausdorff and fractal dimension estimates for invariant sets of non-injective maps

AU - Boichenko, V. A.

AU - Franz, A.

AU - Leonov, G. A.

AU - Reitmann, V.

N1 - Copyright: Copyright 2017 Elsevier B.V., All rights reserved.

PY - 1998

Y1 - 1998

N2 - In this paper we are concerned with upper bounds for the Hausdorff and fractal dimensions of negatively invariant sets of maps on Riemannian manifolds. We consider a special class of non-injective maps, for which we introduce a factor describing the "degree of non-injectivity". This factor can be included in the Hausdorff dimension estimates of Douady-Oesterlé type [2, 7, 10] and in fractal dimension estimates [5, 13, 15] in order to weaken the condition to the singular values of the tangent map. In a number of cases we get better upper dimension estimates.

AB - In this paper we are concerned with upper bounds for the Hausdorff and fractal dimensions of negatively invariant sets of maps on Riemannian manifolds. We consider a special class of non-injective maps, for which we introduce a factor describing the "degree of non-injectivity". This factor can be included in the Hausdorff dimension estimates of Douady-Oesterlé type [2, 7, 10] and in fractal dimension estimates [5, 13, 15] in order to weaken the condition to the singular values of the tangent map. In a number of cases we get better upper dimension estimates.

KW - Fractal dimension estimates

KW - Hausdorff dimension estimates

KW - Non-injective maps

KW - Singular values

KW - Tangent map

UR - http://www.scopus.com/inward/record.url?scp=21944432516&partnerID=8YFLogxK

U2 - 10.4171/ZAA/816

DO - 10.4171/ZAA/816

M3 - Article

AN - SCOPUS:21944432516

VL - 17

SP - 207

EP - 223

JO - Zeitschrift fur Analysis und ihre Anwendungen

JF - Zeitschrift fur Analysis und ihre Anwendungen

SN - 0232-2064

IS - 1

ER -

ID: 73407486