Documents

We consider the decomposition into irreducible components of the exterior algebra $\bigwedge\left(\mathbb{C}^{n}\otimes \left(\mathbb{C}^{k}\right)^{*}\right)$ regarded as a $GL_{n}\times GL_{k}$ module. Irreducible $GL_{n}\times GL_{k}$ representations are parameterized by pairs of Young diagrams $(\lambda,\bar{\lambda}')$, where $\bar{\lambda}'$ is the complement conjugate diagram to $\lambda$ inside the $n\times k$ rectangle. We set the probability of a diagram as a normalized specialization of the character for the corresponding irreducible component. For the principal specialization we get the probability that is equal to the ratio of the $q$-dimension for the irreducible component over the $q$-dimension of the exterior algebra. We demonstrate that this probability distribution can be described by the q-Krawtchouk polynomial ensemble. We derive the limit shape and prove the central limit theorem for the fluctuations in the limit when $n,k$ tend to infinity and $q$ tends to one at comparable rates.
Original languageEnglish
Pages (from-to)106-124
JournalЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН
Volume517
StatePublished - 22 Dec 2022

    Research areas

  • math.RT, math-ph, math.MP, math.PR, 22E46, 33C45, 05E05, 60G55, 60B10, 17B10

ID: 104597626