Research output: Contribution to journal › Article › peer-review
Skew Howe duality and q-Krawtchouk polynomial ensemble. / Nazarov, Anton; Nikitin, Pavel; Sarafannikov, Daniil.
In: ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН, Vol. 517, 22.12.2022, p. 106-124.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Skew Howe duality and q-Krawtchouk polynomial ensemble
AU - Nazarov, Anton
AU - Nikitin, Pavel
AU - Sarafannikov, Daniil
N1 - 17 pages, 5 figures, submitted to Zapiski Nauchnykh Seminarov POMI
PY - 2022/12/22
Y1 - 2022/12/22
N2 - We consider the decomposition into irreducible components of the exterior algebra $\bigwedge\left(\mathbb{C}^{n}\otimes \left(\mathbb{C}^{k}\right)^{*}\right)$ regarded as a $GL_{n}\times GL_{k}$ module. Irreducible $GL_{n}\times GL_{k}$ representations are parameterized by pairs of Young diagrams $(\lambda,\bar{\lambda}')$, where $\bar{\lambda}'$ is the complement conjugate diagram to $\lambda$ inside the $n\times k$ rectangle. We set the probability of a diagram as a normalized specialization of the character for the corresponding irreducible component. For the principal specialization we get the probability that is equal to the ratio of the $q$-dimension for the irreducible component over the $q$-dimension of the exterior algebra. We demonstrate that this probability distribution can be described by the q-Krawtchouk polynomial ensemble. We derive the limit shape and prove the central limit theorem for the fluctuations in the limit when $n,k$ tend to infinity and $q$ tends to one at comparable rates.
AB - We consider the decomposition into irreducible components of the exterior algebra $\bigwedge\left(\mathbb{C}^{n}\otimes \left(\mathbb{C}^{k}\right)^{*}\right)$ regarded as a $GL_{n}\times GL_{k}$ module. Irreducible $GL_{n}\times GL_{k}$ representations are parameterized by pairs of Young diagrams $(\lambda,\bar{\lambda}')$, where $\bar{\lambda}'$ is the complement conjugate diagram to $\lambda$ inside the $n\times k$ rectangle. We set the probability of a diagram as a normalized specialization of the character for the corresponding irreducible component. For the principal specialization we get the probability that is equal to the ratio of the $q$-dimension for the irreducible component over the $q$-dimension of the exterior algebra. We demonstrate that this probability distribution can be described by the q-Krawtchouk polynomial ensemble. We derive the limit shape and prove the central limit theorem for the fluctuations in the limit when $n,k$ tend to infinity and $q$ tends to one at comparable rates.
KW - math.RT
KW - math-ph
KW - math.MP
KW - math.PR
KW - 22E46, 33C45, 05E05, 60G55, 60B10, 17B10
KW - предельная форма
KW - диаграмма Юнга, q-полиномы Кравчука
KW - детерминантный ансамбль
KW - q-размерность
KW - ортогональные полиномы
UR - https://www.mathnet.ru/rus/znsl7283
M3 - Article
VL - 517
SP - 106
EP - 124
JO - ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН
JF - ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН
SN - 0373-2703
ER -
ID: 104597626