Research output: Contribution to journal › Article › peer-review
Let F be a symmetric k-dimensional probability distribution, whose characteristic function {Mathematical expression} satisfies for all t ∈Rk the inequality {Mathematical expression} ≥ -1 + α, where 0 < α < 2. Let n be an arbitrary natural number, let Fn be the n-fold convolution of the distribution F with itself, and let e(nF) be the accompanying infinitely divisible distribution with characteristic function exp(n( {Mathematical expression} -1)). It is proved that the uniform distance ρ(·,·) between corresponding distribution functions admits estimate ρ(Fn,e(nF))≤c1(k)(n-1+exp(-nα+cℓkℓn3n)), where c1(k) depends only on the dimension k, while c2is an absolute constant.
Translated title of the contribution | Об аппроксимации сверток многомерных симметричных распределений сопровождающими законами |
---|---|
Original language | English |
Pages (from-to) | 1859-1872 |
Number of pages | 14 |
Journal | Journal of Soviet Mathematics |
Volume | 61 |
Issue number | 1 |
DOIs | |
State | Published - 1 Aug 1992 |
ID: 38249268