Research output: Contribution to journal › Article › peer-review
Approximation of convolutions of multi-dimensional symmetric distributions by accompanying laws. / Zaitsev, A. Yu.
In: Journal of Soviet Mathematics, Vol. 61, No. 1, 01.08.1992, p. 1859-1872.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Approximation of convolutions of multi-dimensional symmetric distributions by accompanying laws
AU - Zaitsev, A. Yu
PY - 1992/8/1
Y1 - 1992/8/1
N2 - Let F be a symmetric k-dimensional probability distribution, whose characteristic function {Mathematical expression} satisfies for all t ∈Rk the inequality {Mathematical expression} ≥ -1 + α, where 0 < α < 2. Let n be an arbitrary natural number, let Fn be the n-fold convolution of the distribution F with itself, and let e(nF) be the accompanying infinitely divisible distribution with characteristic function exp(n( {Mathematical expression} -1)). It is proved that the uniform distance ρ(·,·) between corresponding distribution functions admits estimate ρ(Fn,e(nF))≤c1(k)(n-1+exp(-nα+cℓkℓn3n)), where c1(k) depends only on the dimension k, while c2is an absolute constant.
AB - Let F be a symmetric k-dimensional probability distribution, whose characteristic function {Mathematical expression} satisfies for all t ∈Rk the inequality {Mathematical expression} ≥ -1 + α, where 0 < α < 2. Let n be an arbitrary natural number, let Fn be the n-fold convolution of the distribution F with itself, and let e(nF) be the accompanying infinitely divisible distribution with characteristic function exp(n( {Mathematical expression} -1)). It is proved that the uniform distance ρ(·,·) between corresponding distribution functions admits estimate ρ(Fn,e(nF))≤c1(k)(n-1+exp(-nα+cℓkℓn3n)), where c1(k) depends only on the dimension k, while c2is an absolute constant.
UR - http://www.scopus.com/inward/record.url?scp=0012910695&partnerID=8YFLogxK
U2 - 10.1007/BF01362793
DO - 10.1007/BF01362793
M3 - Article
AN - SCOPUS:0012910695
VL - 61
SP - 1859
EP - 1872
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 1
ER -
ID: 38249268