We consider a problem of approximation by entire functions of exponential type of functions defined on a countable set E of continuums Gn, E = E =⋃_(n∈Z)Gn. We assume that all Gn are pairwise disjoint and are situated near the real axis. We assume too that all Gn are commensurable in a sense and have uniformly smooth boundaries. A function f is defined independantly on each Gn and is bounded on E and f (r) has a module of continuity ω which satisfies a condition ∫_0^x▒〖ω(t)/〗 t ∙ dt + x ∫_x^∞▒〖ω(t)/t2〗 ∙ dt ≤ cω(x). Then we construct an entire function Fσ of exponential type ≤ σ such that we have the following estimate of approximation of the function f by functions Fσ : |f (z) - Fσ (z)| ≤ cf σ-rω(σ-r ), z ∈ Z, σ ≥ 1.
Original languageRussian
Pages (from-to)481-489
JournalВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
Volume7
Issue number3
StatePublished - 2020
Externally publishedYes

    Research areas

  • approximation, entire functions of exponential type, Hölder classes, аппроксимация, классы Гёльдера, целые функции экспоненциального типа

ID: 78465746