Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Let α>0 and let g∈L1(R) be a continuous function, whose Fourier transform is ĝ(ω)=Ce−γω2 e−2πiδω∏ν=1∞ [Formula presented] where C>0 γ⩾0 δ,δν,λj∈R ∑ν=1 ∞δν 2<∞ m∈Z+. We prove that its Zak transform Zαg(x,ω)=∑k∈Zg(x+αk)e−2πikαω has only one zero (x∗, Formula presented] in the fundamental domain [0,α)×0, [Formula presented]. In particular, the result is valid for totally positive functions. Earlier it was known for such functions without the factor e−γω2 . We also establish simplicity of the zero with respect to each variable and give the applications to Gabor analysis. The described class of functions is closed under convolution.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 55-63 |
Число страниц | 9 |
Журнал | Journal of Approximation Theory |
Том | 222 |
DOI | |
Состояние | Опубликовано - 1 окт 2017 |
ID: 15680170