DOI

Let α>0 and let g∈L1(R) be a continuous function, whose Fourier transform is ĝ(ω)=Ce−γω2 e−2πiδω∏ν=1∞ [Formula presented] where C>0 γ⩾0 δ,δνj∈R ∑ν=1 δν 2<∞ m∈Z+. We prove that its Zak transform Zαg(x,ω)=∑k∈Zg(x+αk)e−2πikαω has only one zero (x, Formula presented] in the fundamental domain [0,α)×0, [Formula presented]. In particular, the result is valid for totally positive functions. Earlier it was known for such functions without the factor e−γω2 . We also establish simplicity of the zero with respect to each variable and give the applications to Gabor analysis. The described class of functions is closed under convolution.

Язык оригиналаанглийский
Страницы (с-по)55-63
Число страниц9
ЖурналJournal of Approximation Theory
Том222
DOI
СостояниеОпубликовано - 1 окт 2017

    Предметные области Scopus

  • Анализ
  • Численный анализ
  • Математика (все)
  • Прикладная математика

ID: 15680170