Research output: Contribution to journal › Article › peer-review
Let α>0 and let g∈L1(R) be a continuous function, whose Fourier transform is ĝ(ω)=Ce−γω2 e−2πiδω∏ν=1∞ [Formula presented] where C>0 γ⩾0 δ,δν,λj∈R ∑ν=1 ∞δν 2<∞ m∈Z+. We prove that its Zak transform Zαg(x,ω)=∑k∈Zg(x+αk)e−2πikαω has only one zero (x∗, Formula presented] in the fundamental domain [0,α)×0, [Formula presented]. In particular, the result is valid for totally positive functions. Earlier it was known for such functions without the factor e−γω2 . We also establish simplicity of the zero with respect to each variable and give the applications to Gabor analysis. The described class of functions is closed under convolution.
Original language | English |
---|---|
Pages (from-to) | 55-63 |
Number of pages | 9 |
Journal | Journal of Approximation Theory |
Volume | 222 |
DOIs | |
State | Published - 1 Oct 2017 |
ID: 15680170