Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Zero sets, entropy, and pointwise asymptotics of orthogonal polynomials. / Bessonov, Roman; Denisov, Sergey.
в: Journal of Functional Analysis, Том 280, № 12, 109002, 15.06.2021.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Zero sets, entropy, and pointwise asymptotics of orthogonal polynomials
AU - Bessonov, Roman
AU - Denisov, Sergey
N1 - Publisher Copyright: © 2021 Elsevier Inc.
PY - 2021/6/15
Y1 - 2021/6/15
N2 - Let μ be a measure from Szegő class on the unit circle T and let {fn} be the family of Schur functions generated by μ. In this paper, we prove a version of the classical Szegő's formula, which controls the oscillation of fn on T for all n⩾0. Then, we focus on an analog of Lusin's conjecture for polynomials {φn} orthogonal with respect to measure μ and prove that pointwise convergence of {|φn|} almost everywhere on T is equivalent to a certain condition on zeroes of φn.
AB - Let μ be a measure from Szegő class on the unit circle T and let {fn} be the family of Schur functions generated by μ. In this paper, we prove a version of the classical Szegő's formula, which controls the oscillation of fn on T for all n⩾0. Then, we focus on an analog of Lusin's conjecture for polynomials {φn} orthogonal with respect to measure μ and prove that pointwise convergence of {|φn|} almost everywhere on T is equivalent to a certain condition on zeroes of φn.
KW - Bounded mean oscillation
KW - Orthogonal polynomials
KW - Szegő class
KW - Zero sets
UR - http://www.scopus.com/inward/record.url?scp=85102900888&partnerID=8YFLogxK
U2 - 10.1016/j.jfa.2021.109002
DO - 10.1016/j.jfa.2021.109002
M3 - Article
AN - SCOPUS:85102900888
VL - 280
JO - Journal of Functional Analysis
JF - Journal of Functional Analysis
SN - 0022-1236
IS - 12
M1 - 109002
ER -
ID: 94393106