DOI

Let μ be a measure from Szegő class on the unit circle T and let {fn} be the family of Schur functions generated by μ. In this paper, we prove a version of the classical Szegő's formula, which controls the oscillation of fn on T for all n⩾0. Then, we focus on an analog of Lusin's conjecture for polynomials {φn} orthogonal with respect to measure μ and prove that pointwise convergence of {|φn|} almost everywhere on T is equivalent to a certain condition on zeroes of φn.

Язык оригиналаанглийский
Номер статьи109002
ЖурналJournal of Functional Analysis
Том280
Номер выпуска12
DOI
СостояниеОпубликовано - 15 июн 2021

    Предметные области Scopus

  • Анализ

ID: 94393106