Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
In this work we investigate the impact of encoding mechanisms used in neural aspect extraction models on the quality of the resulting aspects. We concentrate on the neural attention-based aspect extraction (ABAE) model and evaluate five different types of encoding mechanisms: simple averaging, self-attention with and without positional encoding, recurrent, and convolutional architectures. Our experiments on four datasets of user reviews demonstrate that, in the family of ABAE-like architectures, all models with different encoding mechanisms show the similar results in terms of standard coherence metrics for English and Russian data. Our qualitative study shows that all models yield interpretable aspects as well, and the difference in quality is often very minor.
Язык оригинала | английский |
---|---|
Название основной публикации | Analysis of Images, Social Networks and Texts - 8th International Conference, AIST 2019, Revised Selected Papers |
Редакторы | Wil M.P. van der Aalst, Vladimir Batagelj, Dmitry I. Ignatov, Valentina Kuskova, Sergei O. Kuznetsov, Irina A. Lomazova, Michael Khachay, Andrey Kutuzov, Natalia Loukachevitch, Amedeo Napoli, Panos M. Pardalos, Marcello Pelillo, Andrey V. Savchenko, Elena Tutubalina |
Издатель | Springer Nature |
Страницы | 166-178 |
Число страниц | 13 |
ISBN (печатное издание) | 9783030373337 |
DOI | |
Состояние | Опубликовано - 2019 |
Событие | 8th International Conference on Analysis of Images, Social Networks and Texts, AIST 2019 - Kazan, Российская Федерация Продолжительность: 17 июл 2019 → 19 июл 2019 |
Название | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Том | 11832 LNCS |
ISSN (печатное издание) | 0302-9743 |
ISSN (электронное издание) | 1611-3349 |
конференция | 8th International Conference on Analysis of Images, Social Networks and Texts, AIST 2019 |
---|---|
Страна/Tерритория | Российская Федерация |
Город | Kazan |
Период | 17/07/19 → 19/07/19 |
ID: 95167399