DOI

In this work we investigate the impact of encoding mechanisms used in neural aspect extraction models on the quality of the resulting aspects. We concentrate on the neural attention-based aspect extraction (ABAE) model and evaluate five different types of encoding mechanisms: simple averaging, self-attention with and without positional encoding, recurrent, and convolutional architectures. Our experiments on four datasets of user reviews demonstrate that, in the family of ABAE-like architectures, all models with different encoding mechanisms show the similar results in terms of standard coherence metrics for English and Russian data. Our qualitative study shows that all models yield interpretable aspects as well, and the difference in quality is often very minor.

Язык оригиналаанглийский
Название основной публикацииAnalysis of Images, Social Networks and Texts - 8th International Conference, AIST 2019, Revised Selected Papers
РедакторыWil M.P. van der Aalst, Vladimir Batagelj, Dmitry I. Ignatov, Valentina Kuskova, Sergei O. Kuznetsov, Irina A. Lomazova, Michael Khachay, Andrey Kutuzov, Natalia Loukachevitch, Amedeo Napoli, Panos M. Pardalos, Marcello Pelillo, Andrey V. Savchenko, Elena Tutubalina
ИздательSpringer Nature
Страницы166-178
Число страниц13
ISBN (печатное издание)9783030373337
DOI
СостояниеОпубликовано - 2019
Событие8th International Conference on Analysis of Images, Social Networks and Texts, AIST 2019 - Kazan, Российская Федерация
Продолжительность: 17 июл 201919 июл 2019

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том11832 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция8th International Conference on Analysis of Images, Social Networks and Texts, AIST 2019
Страна/TерриторияРоссийская Федерация
ГородKazan
Период17/07/1919/07/19

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 95167399