Standard

Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star. / Жабко, Алексей Петрович; Нуртазина, Карлыгаш Бегахметовна; Провоторов, Вячеслав Васильевич.

в: Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления, Том 16, № 2, 2020, стр. 129-143.

Результаты исследований: Научные публикации в периодических изданияхстатья

Harvard

Жабко, АП, Нуртазина, КБ & Провоторов, ВВ 2020, 'Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star.', Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления, Том. 16, № 2, стр. 129-143. <http://elibrary.ru/item.asp?id=43827440>

APA

Жабко, А. П., Нуртазина, К. Б., & Провоторов, В. В. (2020). Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star. Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления, 16(2), 129-143. http://elibrary.ru/item.asp?id=43827440

Vancouver

Жабко АП, Нуртазина КБ, Провоторов ВВ. Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star. Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2020;16(2):129-143.

Author

Жабко, Алексей Петрович ; Нуртазина, Карлыгаш Бегахметовна ; Провоторов, Вячеслав Васильевич. / Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star. в: Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2020 ; Том 16, № 2. стр. 129-143.

BibTeX

@article{ff007ff406e54bd9932174509dcc8fb1,
title = "Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star.",
abstract = "In the space of piecewise smooth functions on a star graph, the question of the uniqueness of the recovery of the differential operator of a boundary value problem from its spectral characteristics is analyzed. The uniqueness of the recovery of the coefficient in a differential expression and the constant in the boundary conditions of a boundary value problem from spectral data is considered - a set of eigenvalues and a set of norms of the operator{\textquoteright}s eigenfunctions. The operator of the boundary value problem has a singularity generated by the structure of the graph: differential expression is defined on the interior parts of all the edges of the graph, and in the interior node of the graph, where the differential expression loses its meaning, there is a generalized condition of Kirchhoff - the condition of agreement (the condition of conjugating). A spectral approach is used, which is based on the spectral properties of the elliptical operator: the analyticity of Green{\textquoteright}s function of the boundary value problem on the",
keywords = "differential operator, graph, inverse spectral problem, spectral characteristics, uniqueness solution, граф, дифференциальный оператор, единственность решения, обратная спектральная задача, спектральные характеристики, differential operator, graph, inverse spectral problem, spectral characteristics, uniqueness solution, граф, дифференциальный оператор, единственность решения, обратная спектральная задача, спектральные характеристики",
author = "Жабко, {Алексей Петрович} and Нуртазина, {Карлыгаш Бегахметовна} and Провоторов, {Вячеслав Васильевич}",
year = "2020",
language = "English",
volume = "16",
pages = "129--143",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "2",

}

RIS

TY - JOUR

T1 - Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star.

AU - Жабко, Алексей Петрович

AU - Нуртазина, Карлыгаш Бегахметовна

AU - Провоторов, Вячеслав Васильевич

PY - 2020

Y1 - 2020

N2 - In the space of piecewise smooth functions on a star graph, the question of the uniqueness of the recovery of the differential operator of a boundary value problem from its spectral characteristics is analyzed. The uniqueness of the recovery of the coefficient in a differential expression and the constant in the boundary conditions of a boundary value problem from spectral data is considered - a set of eigenvalues and a set of norms of the operator’s eigenfunctions. The operator of the boundary value problem has a singularity generated by the structure of the graph: differential expression is defined on the interior parts of all the edges of the graph, and in the interior node of the graph, where the differential expression loses its meaning, there is a generalized condition of Kirchhoff - the condition of agreement (the condition of conjugating). A spectral approach is used, which is based on the spectral properties of the elliptical operator: the analyticity of Green’s function of the boundary value problem on the

AB - In the space of piecewise smooth functions on a star graph, the question of the uniqueness of the recovery of the differential operator of a boundary value problem from its spectral characteristics is analyzed. The uniqueness of the recovery of the coefficient in a differential expression and the constant in the boundary conditions of a boundary value problem from spectral data is considered - a set of eigenvalues and a set of norms of the operator’s eigenfunctions. The operator of the boundary value problem has a singularity generated by the structure of the graph: differential expression is defined on the interior parts of all the edges of the graph, and in the interior node of the graph, where the differential expression loses its meaning, there is a generalized condition of Kirchhoff - the condition of agreement (the condition of conjugating). A spectral approach is used, which is based on the spectral properties of the elliptical operator: the analyticity of Green’s function of the boundary value problem on the

KW - differential operator

KW - graph

KW - inverse spectral problem

KW - spectral characteristics

KW - uniqueness solution

KW - граф

KW - дифференциальный оператор

KW - единственность решения

KW - обратная спектральная задача

KW - спектральные характеристики

KW - differential operator

KW - graph

KW - inverse spectral problem

KW - spectral characteristics

KW - uniqueness solution

KW - граф

KW - дифференциальный оператор

KW - единственность решения

KW - обратная спектральная задача

KW - спектральные характеристики

M3 - Article

VL - 16

SP - 129

EP - 143

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 2

ER -

ID: 78589966