Standard

Uniform approximation of Bloch functions and the boundedness of the integration operator on H. / Smith, Wayne; Stolyarov, Dmitriy M.; Volberg, Alexander.

в: Advances in Mathematics, Том 314, 09.07.2017, стр. 185-202.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Smith, Wayne ; Stolyarov, Dmitriy M. ; Volberg, Alexander. / Uniform approximation of Bloch functions and the boundedness of the integration operator on H. в: Advances in Mathematics. 2017 ; Том 314. стр. 185-202.

BibTeX

@article{95c06fb83d2249a3b28dd20300d2c1c8,
title = "Uniform approximation of Bloch functions and the boundedness of the integration operator on H∞",
abstract = "We obtain a necessary and sufficient condition for the operator of integration to be bounded on H∞ in a simply connected domain. The main ingredient of the proof is a new result on uniform approximation of Bloch functions.",
keywords = "Approximation, Bloch functions, Simply connected domains, Volterra operator",
author = "Wayne Smith and Stolyarov, {Dmitriy M.} and Alexander Volberg",
year = "2017",
month = jul,
day = "9",
doi = "10.1016/j.aim.2017.04.028",
language = "English",
volume = "314",
pages = "185--202",
journal = "Advances in Mathematics",
issn = "0001-8708",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Uniform approximation of Bloch functions and the boundedness of the integration operator on H∞

AU - Smith, Wayne

AU - Stolyarov, Dmitriy M.

AU - Volberg, Alexander

PY - 2017/7/9

Y1 - 2017/7/9

N2 - We obtain a necessary and sufficient condition for the operator of integration to be bounded on H∞ in a simply connected domain. The main ingredient of the proof is a new result on uniform approximation of Bloch functions.

AB - We obtain a necessary and sufficient condition for the operator of integration to be bounded on H∞ in a simply connected domain. The main ingredient of the proof is a new result on uniform approximation of Bloch functions.

KW - Approximation

KW - Bloch functions

KW - Simply connected domains

KW - Volterra operator

UR - http://www.scopus.com/inward/record.url?scp=85019092008&partnerID=8YFLogxK

U2 - 10.1016/j.aim.2017.04.028

DO - 10.1016/j.aim.2017.04.028

M3 - Article

AN - SCOPUS:85019092008

VL - 314

SP - 185

EP - 202

JO - Advances in Mathematics

JF - Advances in Mathematics

SN - 0001-8708

ER -

ID: 35958721