DOI

Question answering (QA) Transformer-based models might become efficient in inclusive education. For example, one can test and tune such models with small closed-domain datasets before the implementation of a new system in an inclusive organization. However, studies in the sociomedical domain show that such models can be unpredictable. They can mislead a user or evoke aversive emotional states. The paper addresses the problem of investigating safety-first QA models that would generate user-friendly outputs. The study aims to analyze the performance of SOTA Transformer-based QA models on a custom dataset collected by the author of the paper. The dataset contains 1 134 question-answer pairs about autism spectrum disorders (ASD) in Russian. The study presents the validation and evaluation of extractive and generative QA models. The author used transfer learning techniques to investigate domain-specific QA properties and suggest solutions that might provide higher QA efficiency in the inclusion. The study shows that although generative QA models can misrepresent facts and generate false tokens, they might bring diversity in the system outputs and make the automated QA more user-friendly for younger people. Although extractive QA is more reliable, according to the metric scores presented in this study, such models might be less efficient than generative ones. The principal conclusion of the study is that a combination of generative and extractive approaches might lead to higher efficiency in building QA systems for inclusion. However, the performance of such combined systems in the inclusion is yet to be investigated.
Язык оригиналаанглийский
Название основной публикацииDigital Transformation and Global Society - 6th International Conference, DTGS 2021, Revised Selected Papers
Подзаголовок основной публикации6th International Conference, DTGS 2021, St. Petersburg, Russia, June 23–25, 2021
РедакторыDaniel A. Alexandrov, Andrei V. Chugunov, Yury Kabanov, Olessia Koltsova, Ilya Musabirov, Sergei Pashakhin, Alexander V. Boukhanovsky, Andrei V. Chugunov
Место публикации Cham
ИздательSpringer Nature
Страницы122-133
Число страниц12
ISBN (электронное издание)978-3-030-93715-7
ISBN (печатное издание)978-3-030-93714-0
DOI
СостояниеОпубликовано - 2022
СобытиеDigital Transformation of Global Societies 2021 - Saint Petesburg, Virtual, Online, Российская Федерация
Продолжительность: 23 июн 202125 июн 2021
Номер конференции: 6
http://dtgs-conference.org
http://dtgs-conference.org/

Серия публикаций

НазваниеCommunications in Computer and Information Science
Том1503 CCIS
ISSN (печатное издание)1865-0929
ISSN (электронное издание)1865-0937

конференция

конференцияDigital Transformation of Global Societies 2021
Сокращенное названиеDTGS 2021
Страна/TерриторияРоссийская Федерация
ГородVirtual, Online
Период23/06/2125/06/21
Сайт в сети Internet

    Предметные области Scopus

  • Математика (все)
  • Компьютерные науки (все)

ID: 84764141