Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Topologically Nontrivial Phase-Change Compound GeSb2Te4. / Nurmamat, Munisa; Okamoto, Kazuaki; Zhu, Siyuan; Menshchikova, Tatiana V. ; Rusinov, Igor P. ; Korostelev, Vladislav O.; Miyamoto, Koji ; Okuda, Taichi ; Miyashita, Takeo ; Wang, Xiaoxiao; Ishida, Yukiaki ; Sumida, Kazuki ; Schwier, Eike F.; Ye, Mao ; Aliev, Ziya S.; Babanly, Mahammad B.; Amiraslanov, Imamaddin R.; Chulkov, Evgueni V. ; Kokh, Konstantin A. ; Tereshchenko, Oleg E. ; Shimada, Kenya; Shin, Shik; Kimura, Akio.
в: ACS Nano, Том 14, № 7, 2020, стр. 9059–9065.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Topologically Nontrivial Phase-Change Compound GeSb2Te4
AU - Nurmamat, Munisa
AU - Okamoto, Kazuaki
AU - Zhu, Siyuan
AU - Menshchikova, Tatiana V.
AU - Rusinov, Igor P.
AU - Korostelev, Vladislav O.
AU - Miyamoto, Koji
AU - Okuda, Taichi
AU - Miyashita, Takeo
AU - Wang, Xiaoxiao
AU - Ishida, Yukiaki
AU - Sumida, Kazuki
AU - Schwier, Eike F.
AU - Ye, Mao
AU - Aliev, Ziya S.
AU - Babanly, Mahammad B.
AU - Amiraslanov, Imamaddin R.
AU - Chulkov, Evgueni V.
AU - Kokh, Konstantin A.
AU - Tereshchenko, Oleg E.
AU - Shimada, Kenya
AU - Shin, Shik
AU - Kimura, Akio
PY - 2020
Y1 - 2020
N2 - Chalcogenide phase-change materials show strikingly contrasting optical and electrical properties, which has led to their extensive implementation in various memory devices. By performing spin-, time-, and angle-resolved photoemission spectroscopy combined with the first-principles calculation, we report the experimental results that the crystalline phase of GeSb2Te4 is topologically nontrivial in the vicinity of the Dirac semimetal phase. The resulting linearly dispersive bulk Dirac-like bands that cross the Fermi level and are thus responsible for conductivity in the stable crystalline phase of GeSb2Te4 can be viewed as a 3D analogue of graphene. Our finding provides us with the possibility of realizing inertia-free Dirac currents in phase-change materials.
AB - Chalcogenide phase-change materials show strikingly contrasting optical and electrical properties, which has led to their extensive implementation in various memory devices. By performing spin-, time-, and angle-resolved photoemission spectroscopy combined with the first-principles calculation, we report the experimental results that the crystalline phase of GeSb2Te4 is topologically nontrivial in the vicinity of the Dirac semimetal phase. The resulting linearly dispersive bulk Dirac-like bands that cross the Fermi level and are thus responsible for conductivity in the stable crystalline phase of GeSb2Te4 can be viewed as a 3D analogue of graphene. Our finding provides us with the possibility of realizing inertia-free Dirac currents in phase-change materials.
UR - https://pubs.acs.org/doi/10.1021/acsnano.0c04145
M3 - Article
VL - 14
SP - 9059
EP - 9065
JO - ACS Nano
JF - ACS Nano
SN - 1936-0851
IS - 7
ER -
ID: 70635776