• Munisa Nurmamat
  • Kazuaki Okamoto
  • Siyuan Zhu
  • Tatiana V. Menshchikova
  • Vladislav O. Korostelev
  • Koji Miyamoto
  • Taichi Okuda
  • Takeo Miyashita
  • Xiaoxiao Wang
  • Yukiaki Ishida
  • Kazuki Sumida
  • Eike F. Schwier
  • Mao Ye
  • Ziya S. Aliev
  • Mahammad B. Babanly
  • Imamaddin R. Amiraslanov
  • Evgueni V. Chulkov
  • Kenya Shimada
  • Shik Shin
  • Akio Kimura
Chalcogenide phase-change materials show strikingly contrasting optical and electrical properties, which has led to their extensive implementation in various memory devices. By performing spin-, time-, and angle-resolved photoemission spectroscopy combined with the first-principles calculation, we report the experimental results that the crystalline phase of GeSb2Te4 is topologically nontrivial in the vicinity of the Dirac semimetal phase. The resulting linearly dispersive bulk Dirac-like bands that cross the Fermi level and are thus responsible for conductivity in the stable crystalline phase of GeSb2Te4 can be viewed as a 3D analogue of graphene. Our finding provides us with the possibility of realizing inertia-free Dirac currents in phase-change materials.
Язык оригиналаанглийский
Страницы (с-по)9059–9065
ЖурналACS Nano
Том14
Номер выпуска7
СостояниеОпубликовано - 2020

ID: 70635776