Standard

Thermodynamic Properties and Structure of Interfacial Boundaries in Nonionic Fluids from the Multilayer Quasichemical Model. / Сорина, Полина Олеговна; Викторов, Алексей Исмаилович.

в: Journal of Molecular Liquids, Том 414, № Part B, 126229, 01.11.2024.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{4dea9acb9aab461d8741a0bd1e1f1f8d,
title = "Thermodynamic Properties and Structure of Interfacial Boundaries in Nonionic Fluids from the Multilayer Quasichemical Model",
abstract = "The interfacial properties and structure of nonuniform fluids containing complex chainlike molecules and associating species are very much needed in a variety of different fields, including enhanced oil recovery, drug delivery, pharmacy, cosmetics, food processing, etc. Recently, we described the Multilayer Quasichemical Model (MQuM) of a nonuniform fluid that provides a remarkably detailed structural information, including the local concentration and orientation of functional groups of the molecules, the orientation profiles of the chemical bonds in molecular chains and the orientation profiles of the hydrogen bonds in the mixture. In this work, we focus on the description of thermodynamic properties with the aid of MQuM, including the interfacial tension and the profiles of normal and transverse pressures. Before proceeding to more complex systems, a test is performed through comparison with the previously known results from the Scheutjens-Fleer theory for the planar liquid–vapor interface and spherical droplet in one-component fluid of nonpolar monomeric molecules. The model is applied then for planar interfaces between the liquid phases in mixtures of water with n-alkanes of different chain length and for spherical drops in model systems that contain an associating solvent, a nonpolar chain and a nonionic amphiphile. Our theoretical results are compared with experiment, predictions from iSAFT and MD simulation data from the literature. For the spherical droplets, we discuss the model description of the dependence of the interfacial tension on the curvature and estimate the Tolman length. For the planar interface between the equilibrium liquid phases in water – n-alkane mixtures, the interfacial tensions predicted from the model are in good agreement with experiment.",
keywords = "Interface local structure, Interfacial tension, Specific interactions, Pressure tensor, Theory, Local structure, Pressure, Interface, Drop",
author = "Сорина, {Полина Олеговна} and Викторов, {Алексей Исмаилович}",
year = "2024",
month = nov,
day = "1",
doi = "10.1016/j.molliq.2024.126229",
language = "English",
volume = "414",
journal = "Journal of Molecular Liquids",
issn = "0167-7322",
publisher = "Elsevier",
number = "Part B",

}

RIS

TY - JOUR

T1 - Thermodynamic Properties and Structure of Interfacial Boundaries in Nonionic Fluids from the Multilayer Quasichemical Model

AU - Сорина, Полина Олеговна

AU - Викторов, Алексей Исмаилович

PY - 2024/11/1

Y1 - 2024/11/1

N2 - The interfacial properties and structure of nonuniform fluids containing complex chainlike molecules and associating species are very much needed in a variety of different fields, including enhanced oil recovery, drug delivery, pharmacy, cosmetics, food processing, etc. Recently, we described the Multilayer Quasichemical Model (MQuM) of a nonuniform fluid that provides a remarkably detailed structural information, including the local concentration and orientation of functional groups of the molecules, the orientation profiles of the chemical bonds in molecular chains and the orientation profiles of the hydrogen bonds in the mixture. In this work, we focus on the description of thermodynamic properties with the aid of MQuM, including the interfacial tension and the profiles of normal and transverse pressures. Before proceeding to more complex systems, a test is performed through comparison with the previously known results from the Scheutjens-Fleer theory for the planar liquid–vapor interface and spherical droplet in one-component fluid of nonpolar monomeric molecules. The model is applied then for planar interfaces between the liquid phases in mixtures of water with n-alkanes of different chain length and for spherical drops in model systems that contain an associating solvent, a nonpolar chain and a nonionic amphiphile. Our theoretical results are compared with experiment, predictions from iSAFT and MD simulation data from the literature. For the spherical droplets, we discuss the model description of the dependence of the interfacial tension on the curvature and estimate the Tolman length. For the planar interface between the equilibrium liquid phases in water – n-alkane mixtures, the interfacial tensions predicted from the model are in good agreement with experiment.

AB - The interfacial properties and structure of nonuniform fluids containing complex chainlike molecules and associating species are very much needed in a variety of different fields, including enhanced oil recovery, drug delivery, pharmacy, cosmetics, food processing, etc. Recently, we described the Multilayer Quasichemical Model (MQuM) of a nonuniform fluid that provides a remarkably detailed structural information, including the local concentration and orientation of functional groups of the molecules, the orientation profiles of the chemical bonds in molecular chains and the orientation profiles of the hydrogen bonds in the mixture. In this work, we focus on the description of thermodynamic properties with the aid of MQuM, including the interfacial tension and the profiles of normal and transverse pressures. Before proceeding to more complex systems, a test is performed through comparison with the previously known results from the Scheutjens-Fleer theory for the planar liquid–vapor interface and spherical droplet in one-component fluid of nonpolar monomeric molecules. The model is applied then for planar interfaces between the liquid phases in mixtures of water with n-alkanes of different chain length and for spherical drops in model systems that contain an associating solvent, a nonpolar chain and a nonionic amphiphile. Our theoretical results are compared with experiment, predictions from iSAFT and MD simulation data from the literature. For the spherical droplets, we discuss the model description of the dependence of the interfacial tension on the curvature and estimate the Tolman length. For the planar interface between the equilibrium liquid phases in water – n-alkane mixtures, the interfacial tensions predicted from the model are in good agreement with experiment.

KW - Interface local structure

KW - Interfacial tension

KW - Specific interactions

KW - Pressure tensor

KW - Theory

KW - Local structure

KW - Pressure

KW - Interface

KW - Drop

UR - https://www.mendeley.com/catalogue/87bccfd1-92c1-39e2-b487-9f66dc3702f3/

U2 - 10.1016/j.molliq.2024.126229

DO - 10.1016/j.molliq.2024.126229

M3 - Article

VL - 414

JO - Journal of Molecular Liquids

JF - Journal of Molecular Liquids

SN - 0167-7322

IS - Part B

M1 - 126229

ER -

ID: 126150294