Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Thermodynamic Properties and Structure of Interfacial Boundaries in Nonionic Fluids from the Multilayer Quasichemical Model. / Сорина, Полина Олеговна; Викторов, Алексей Исмаилович.
в: Journal of Molecular Liquids, Том 414, № Part B, 126229, 01.11.2024.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Thermodynamic Properties and Structure of Interfacial Boundaries in Nonionic Fluids from the Multilayer Quasichemical Model
AU - Сорина, Полина Олеговна
AU - Викторов, Алексей Исмаилович
PY - 2024/11/1
Y1 - 2024/11/1
N2 - The interfacial properties and structure of nonuniform fluids containing complex chainlike molecules and associating species are very much needed in a variety of different fields, including enhanced oil recovery, drug delivery, pharmacy, cosmetics, food processing, etc. Recently, we described the Multilayer Quasichemical Model (MQuM) of a nonuniform fluid that provides a remarkably detailed structural information, including the local concentration and orientation of functional groups of the molecules, the orientation profiles of the chemical bonds in molecular chains and the orientation profiles of the hydrogen bonds in the mixture. In this work, we focus on the description of thermodynamic properties with the aid of MQuM, including the interfacial tension and the profiles of normal and transverse pressures. Before proceeding to more complex systems, a test is performed through comparison with the previously known results from the Scheutjens-Fleer theory for the planar liquid–vapor interface and spherical droplet in one-component fluid of nonpolar monomeric molecules. The model is applied then for planar interfaces between the liquid phases in mixtures of water with n-alkanes of different chain length and for spherical drops in model systems that contain an associating solvent, a nonpolar chain and a nonionic amphiphile. Our theoretical results are compared with experiment, predictions from iSAFT and MD simulation data from the literature. For the spherical droplets, we discuss the model description of the dependence of the interfacial tension on the curvature and estimate the Tolman length. For the planar interface between the equilibrium liquid phases in water – n-alkane mixtures, the interfacial tensions predicted from the model are in good agreement with experiment.
AB - The interfacial properties and structure of nonuniform fluids containing complex chainlike molecules and associating species are very much needed in a variety of different fields, including enhanced oil recovery, drug delivery, pharmacy, cosmetics, food processing, etc. Recently, we described the Multilayer Quasichemical Model (MQuM) of a nonuniform fluid that provides a remarkably detailed structural information, including the local concentration and orientation of functional groups of the molecules, the orientation profiles of the chemical bonds in molecular chains and the orientation profiles of the hydrogen bonds in the mixture. In this work, we focus on the description of thermodynamic properties with the aid of MQuM, including the interfacial tension and the profiles of normal and transverse pressures. Before proceeding to more complex systems, a test is performed through comparison with the previously known results from the Scheutjens-Fleer theory for the planar liquid–vapor interface and spherical droplet in one-component fluid of nonpolar monomeric molecules. The model is applied then for planar interfaces between the liquid phases in mixtures of water with n-alkanes of different chain length and for spherical drops in model systems that contain an associating solvent, a nonpolar chain and a nonionic amphiphile. Our theoretical results are compared with experiment, predictions from iSAFT and MD simulation data from the literature. For the spherical droplets, we discuss the model description of the dependence of the interfacial tension on the curvature and estimate the Tolman length. For the planar interface between the equilibrium liquid phases in water – n-alkane mixtures, the interfacial tensions predicted from the model are in good agreement with experiment.
KW - Interface local structure
KW - Interfacial tension
KW - Specific interactions
KW - Pressure tensor
KW - Theory
KW - Local structure
KW - Pressure
KW - Interface
KW - Drop
UR - https://www.mendeley.com/catalogue/87bccfd1-92c1-39e2-b487-9f66dc3702f3/
U2 - 10.1016/j.molliq.2024.126229
DO - 10.1016/j.molliq.2024.126229
M3 - Article
VL - 414
JO - Journal of Molecular Liquids
JF - Journal of Molecular Liquids
SN - 0167-7322
IS - Part B
M1 - 126229
ER -
ID: 126150294