DOI

The interfacial properties and structure of nonuniform fluids containing complex chainlike molecules and associating species are very much needed in a variety of different fields, including enhanced oil recovery, drug delivery, pharmacy, cosmetics, food processing, etc. Recently, we described the Multilayer Quasichemical Model (MQuM) of a nonuniform fluid that provides a remarkably detailed structural information, including the local concentration and orientation of functional groups of the molecules, the orientation profiles of the chemical bonds in molecular chains and the orientation profiles of the hydrogen bonds in the mixture. In this work, we focus on the description of thermodynamic properties with the aid of MQuM, including the interfacial tension and the profiles of normal and transverse pressures. Before proceeding to more complex systems, a test is performed through comparison with the previously known results from the Scheutjens-Fleer theory for the planar liquid–vapor interface and spherical droplet in one-component fluid of nonpolar monomeric molecules. The model is applied then for planar interfaces between the liquid phases in mixtures of water with n-alkanes of different chain length and for spherical drops in model systems that contain an associating solvent, a nonpolar chain and a nonionic amphiphile. Our theoretical results are compared with experiment, predictions from iSAFT and MD simulation data from the literature. For the spherical droplets, we discuss the model description of the dependence of the interfacial tension on the curvature and estimate the Tolman length. For the planar interface between the equilibrium liquid phases in water – n-alkane mixtures, the interfacial tensions predicted from the model are in good agreement with experiment.
Язык оригиналаанглийский
Номер статьи126229
Число страниц11
ЖурналJournal of Molecular Liquids
Том414
Номер выпускаPart B
DOI
СостояниеОпубликовано - 1 ноя 2024

ID: 126150294