DOI

In this paper we research the orbital motion described by equations in hamiltonian form. The shift mapping along a trajectory of motion is canonical one and it makes possible to apply conservative methods. The examples of application of such methods in problems of celestial mechanics are given. The first order approximation of generating function of shift mapping along the trajectory is constructed for uncontrolled motion in a neighborhood of collinear libration point of Sun-Earth system. Also this approach is applied to controllable motion with special kind of control, which ensuring the preservation of hamiltonian form of the equations of motion. The form of iterative schemes for numerical modeling of motion is given. For fixed number of iterations the accuracy of presented numerical method is estimated in comparison with Runge-Kutta method of the fourth order. The analytical representation of the generating function up to second-order terms with respect to time increment is given.

Язык оригиналаАнглийский
Название основной публикацииApplication of Mathematics in Technical and Natural Sciences
Подзаголовок основной публикации9th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2017
РедакторыMD Todorov
ИздательAmerican Institute of Physics
Число страниц6
Том1895
ISBN (электронное издание)9780735415799
DOI
СостояниеОпубликовано - 2017
Событие9th International Conference on Promoting the Application of Mathematics in Technical and Natural Sciences (AMiTaNS) - Albena, Болгария
Продолжительность: 21 июн 201726 июн 2017

Серия публикаций

НазваниеAIP Conference Proceedings
ИздательAMER INST PHYSICS
Том1895
ISSN (печатное издание)0094-243X

конференция

конференция9th International Conference on Promoting the Application of Mathematics in Technical and Natural Sciences (AMiTaNS)
Страна/TерриторияБолгария
ГородAlbena
Период21/06/1726/06/17

    Предметные области Scopus

  • Физика и астрономия (все)

ID: 9180673