Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The Limit Shape of a Probability Measure on a Tensor Product of Modules of the Bn Algebra. / Nazarov, A. A.; Postnova, O. V.
в: Journal of Mathematical Sciences (United States), Том 240, № 5, 07.08.2019, стр. 556-566.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The Limit Shape of a Probability Measure on a Tensor Product of Modules of the Bn Algebra
AU - Nazarov, A. A.
AU - Postnova, O. V.
PY - 2019/8/7
Y1 - 2019/8/7
N2 - We study a probability measure on the integral dominant weights in the decomposition of the Nth tensor power of the spinor representation of the Lie algebra so(2n + 1). The probability of a dominant weight λ is defined as the dimension of the irreducible component of λ divided by the total dimension 2nN of the tensor power. We prove that as N →∞, the measure weakly converges to the radial part of the SO(2n+1)-invariant measure on so(2n+1) induced by the Killing form. Thus, we generalize Kerov’s theorem for su(n) to so(2n + 1).
AB - We study a probability measure on the integral dominant weights in the decomposition of the Nth tensor power of the spinor representation of the Lie algebra so(2n + 1). The probability of a dominant weight λ is defined as the dimension of the irreducible component of λ divided by the total dimension 2nN of the tensor power. We prove that as N →∞, the measure weakly converges to the radial part of the SO(2n+1)-invariant measure on so(2n+1) induced by the Killing form. Thus, we generalize Kerov’s theorem for su(n) to so(2n + 1).
UR - http://www.scopus.com/inward/record.url?scp=85068339553&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/limit-shape-probability-measure-tensor-product-modules-bn-algebra
U2 - 10.1007/s10958-019-04374-y
DO - 10.1007/s10958-019-04374-y
M3 - Article
AN - SCOPUS:85068339553
VL - 240
SP - 556
EP - 566
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 5
ER -
ID: 48485698