Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We study a probability measure on the integral dominant weights in the decomposition of the Nth tensor power of the spinor representation of the Lie algebra so(2n + 1). The probability of a dominant weight λ is defined as the dimension of the irreducible component of λ divided by the total dimension 2nN of the tensor power. We prove that as N →∞, the measure weakly converges to the radial part of the SO(2n+1)-invariant measure on so(2n+1) induced by the Killing form. Thus, we generalize Kerov’s theorem for su(n) to so(2n + 1).
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 556-566 |
| Число страниц | 11 |
| Журнал | Journal of Mathematical Sciences (United States) |
| Том | 240 |
| Номер выпуска | 5 |
| Дата раннего онлайн-доступа | 26 июн 2019 |
| DOI | |
| Состояние | Опубликовано - 7 авг 2019 |
ID: 48485698