DOI

We study a probability measure on the integral dominant weights in the decomposition of the Nth tensor power of the spinor representation of the Lie algebra so(2n + 1). The probability of a dominant weight λ is defined as the dimension of the irreducible component of λ divided by the total dimension 2nN of the tensor power. We prove that as N →∞, the measure weakly converges to the radial part of the SO(2n+1)-invariant measure on so(2n+1) induced by the Killing form. Thus, we generalize Kerov’s theorem for su(n) to so(2n + 1).

Язык оригиналаанглийский
Страницы (с-по)556-566
Число страниц11
ЖурналJournal of Mathematical Sciences (United States)
Том240
Номер выпуска5
Дата раннего онлайн-доступа26 июн 2019
DOI
СостояниеОпубликовано - 7 авг 2019

    Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

ID: 48485698