• E.V. Chernigovskaya
  • A.A. Korotkov
  • L.S. Nikitina
  • N.A. Dorofeeva
  • M.V. Glazova
© 2016 Taylor & Francis. It is known that perirhinal/insular cortices participate in the transmission of sensory stimuli to the motor cortex,thus coordinating motor activity during seizures. In the present study we analysed seizure-related proteins, suchas GABA, glutamate, ERK1/2 and the synaptic proteins in the insular cortex of Krushinsky-Molodkina (KM) ratsgenetically prone to audiogenic seizures (AGS). We compared seizure-naïve and seizure-experienced KM ratswith control Wistar rats in order to distinguish whether seizure-related protein changes are associated with seizureevent or representing an inhered pathological abnormality that determines predisposition to AGS. Our datademonstrated an increased level of vesicular glutamate transporter VGLUT2 in naïve and seizure-experienced KMrats, while glutamic acid decarboxylases GAD65 and GAD67 levels were unchanged. Evaluation of the synaptic proteins showed a decrease in SNAP-25 and upregulation of synapsin I phosphorylation in both groups of KM ratsin compari
Язык оригиналаанглийский
Страницы (с-по)1108-1117
ЖурналNeurological Research
Том37
Номер выпуска12
DOI
СостояниеОпубликовано - 2015

ID: 3988426