Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Topic modeling has emerged over the last decade as a powerful tool for analyzing large text corpora, including Web-based usergenerated texts. Topic stability, however, remains a concern: topic models have a very complex optimization landscape with many local maxima, and even different runs of the same model yield very different topics. Aiming to add stability to topic modeling, we propose an approach to topic modeling based on local density regularization, where words in a local context window of a given word have higher probabilities to get the same topic as that word. We compare several models with local density regularizers and show how they can improve topic stability while remaining on par with classical models in terms of quality metrics.
Язык оригинала | английский |
---|---|
Название основной публикации | Internet Science - 3rd International Conference, INSCI 2016, Proceedings |
Редакторы | Anna Satsiou, Yanina Welp, Thanassis Tiropanis, Dominic DiFranzo, Ioannis Stavrakakis, Franco Bagnoli, Paolo Nesi, Giovanna Pacini |
Издатель | Springer Nature |
Страницы | 176-188 |
Число страниц | 13 |
ISBN (печатное издание) | 9783319459813 |
DOI | |
Состояние | Опубликовано - 2016 |
Событие | 3rd International Conference on Internet Science, INSCI 2016 - Florence, Италия Продолжительность: 12 сен 2016 → 14 сен 2016 |
Название | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Том | 9934 LNCS |
ISSN (печатное издание) | 0302-9743 |
ISSN (электронное издание) | 1611-3349 |
конференция | 3rd International Conference on Internet Science, INSCI 2016 |
---|---|
Страна/Tерритория | Италия |
Город | Florence |
Период | 12/09/16 → 14/09/16 |
ID: 7604879