DOI

Topic modeling has emerged over the last decade as a powerful tool for analyzing large text corpora, including Web-based usergenerated texts. Topic stability, however, remains a concern: topic models have a very complex optimization landscape with many local maxima, and even different runs of the same model yield very different topics. Aiming to add stability to topic modeling, we propose an approach to topic modeling based on local density regularization, where words in a local context window of a given word have higher probabilities to get the same topic as that word. We compare several models with local density regularizers and show how they can improve topic stability while remaining on par with classical models in terms of quality metrics.

Язык оригиналаанглийский
Название основной публикацииInternet Science - 3rd International Conference, INSCI 2016, Proceedings
РедакторыAnna Satsiou, Yanina Welp, Thanassis Tiropanis, Dominic DiFranzo, Ioannis Stavrakakis, Franco Bagnoli, Paolo Nesi, Giovanna Pacini
ИздательSpringer Nature
Страницы176-188
Число страниц13
ISBN (печатное издание)9783319459813
DOI
СостояниеОпубликовано - 2016
Событие3rd International Conference on Internet Science, INSCI 2016 - Florence, Италия
Продолжительность: 12 сен 201614 сен 2016

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том9934 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция3rd International Conference on Internet Science, INSCI 2016
Страна/TерриторияИталия
ГородFlorence
Период12/09/1614/09/16

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 7604879