Standard

Spectral stability of metric-measure Laplacians. / Burago, Dmitri; Иванов, Сергей Владимирович; Kurylev, Yaroslav.

в: Israel Journal of Mathematics, Том 232, № 1, 08.2019, стр. 125-158.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Burago, D, Иванов, СВ & Kurylev, Y 2019, 'Spectral stability of metric-measure Laplacians', Israel Journal of Mathematics, Том. 232, № 1, стр. 125-158. https://doi.org/10.1007/s11856-019-1865-7

APA

Burago, D., Иванов, С. В., & Kurylev, Y. (2019). Spectral stability of metric-measure Laplacians. Israel Journal of Mathematics, 232(1), 125-158. https://doi.org/10.1007/s11856-019-1865-7

Vancouver

Burago D, Иванов СВ, Kurylev Y. Spectral stability of metric-measure Laplacians. Israel Journal of Mathematics. 2019 Авг.;232(1):125-158. https://doi.org/10.1007/s11856-019-1865-7

Author

Burago, Dmitri ; Иванов, Сергей Владимирович ; Kurylev, Yaroslav. / Spectral stability of metric-measure Laplacians. в: Israel Journal of Mathematics. 2019 ; Том 232, № 1. стр. 125-158.

BibTeX

@article{46b49e94bad84172bdb68681239f9877,
title = "Spectral stability of metric-measure Laplacians",
abstract = "We consider a “convolution mm-Laplacian” operator on metric-measure spaces and study its spectral properties. The definition is based on averaging over small metric balls. For reasonably nice metric-measure spaces we prove stability of convolution Laplacian{\textquoteright}s spectrum with respect to metric-measure perturbations and obtain Weyl-type estimates on the number of eigenvalues.",
keywords = "GEOMETRY, MEASURE-SPACES",
author = "Dmitri Burago and Иванов, {Сергей Владимирович} and Yaroslav Kurylev",
year = "2019",
month = aug,
doi = "10.1007/s11856-019-1865-7",
language = "English",
volume = "232",
pages = "125--158",
journal = "Israel Journal of Mathematics",
issn = "0021-2172",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - Spectral stability of metric-measure Laplacians

AU - Burago, Dmitri

AU - Иванов, Сергей Владимирович

AU - Kurylev, Yaroslav

PY - 2019/8

Y1 - 2019/8

N2 - We consider a “convolution mm-Laplacian” operator on metric-measure spaces and study its spectral properties. The definition is based on averaging over small metric balls. For reasonably nice metric-measure spaces we prove stability of convolution Laplacian’s spectrum with respect to metric-measure perturbations and obtain Weyl-type estimates on the number of eigenvalues.

AB - We consider a “convolution mm-Laplacian” operator on metric-measure spaces and study its spectral properties. The definition is based on averaging over small metric balls. For reasonably nice metric-measure spaces we prove stability of convolution Laplacian’s spectrum with respect to metric-measure perturbations and obtain Weyl-type estimates on the number of eigenvalues.

KW - GEOMETRY

KW - MEASURE-SPACES

UR - http://www.scopus.com/inward/record.url?scp=85070419427&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/spectral-stability-metricmeasure-laplacians

U2 - 10.1007/s11856-019-1865-7

DO - 10.1007/s11856-019-1865-7

M3 - Article

VL - 232

SP - 125

EP - 158

JO - Israel Journal of Mathematics

JF - Israel Journal of Mathematics

SN - 0021-2172

IS - 1

ER -

ID: 49788493