Spectral stability of metric-measure Laplacians. / Burago, Dmitri; Иванов, Сергей Владимирович; Kurylev, Yaroslav.
In: Israel Journal of Mathematics, Vol. 232, No. 1, 08.2019, p. 125-158.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Spectral stability of metric-measure Laplacians
AU - Burago, Dmitri
AU - Иванов, Сергей Владимирович
AU - Kurylev, Yaroslav
PY - 2019/8
Y1 - 2019/8
N2 - We consider a “convolution mm-Laplacian” operator on metric-measure spaces and study its spectral properties. The definition is based on averaging over small metric balls. For reasonably nice metric-measure spaces we prove stability of convolution Laplacian’s spectrum with respect to metric-measure perturbations and obtain Weyl-type estimates on the number of eigenvalues.
AB - We consider a “convolution mm-Laplacian” operator on metric-measure spaces and study its spectral properties. The definition is based on averaging over small metric balls. For reasonably nice metric-measure spaces we prove stability of convolution Laplacian’s spectrum with respect to metric-measure perturbations and obtain Weyl-type estimates on the number of eigenvalues.
KW - GEOMETRY
KW - MEASURE-SPACES
UR - http://www.scopus.com/inward/record.url?scp=85070419427&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/spectral-stability-metricmeasure-laplacians
U2 - 10.1007/s11856-019-1865-7
DO - 10.1007/s11856-019-1865-7
M3 - Article
VL - 232
SP - 125
EP - 158
JO - Israel Journal of Mathematics
JF - Israel Journal of Mathematics
SN - 0021-2172
IS - 1
ER -
ID: 49788493