Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Some embedding theorems for spaces of harmonic functions. / Shirokov, N. A.
в: Journal of Soviet Mathematics, Том 14, № 2, 08.1980, стр. 1173-1176.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Some embedding theorems for spaces of harmonic functions
AU - Shirokov, N. A.
PY - 1980/8
Y1 - 1980/8
N2 - For the domains of the space Rn, n≥2, with a finite number of conical points, one proves embedding theorems for the spaces of harmonic functions which generalize the Littlewood-Paley and Carleson theorems. Let ∥·∥p, Ω be a norm which is transferred in some natural manner to the space of harmonic functions in the domain Ω and which in the unit circle of the space ℝ2 turns into the norm of the Hardy space Hp and let ℋp(Ω) be the space of harmonic functions in Ω with this norm. One establishes, in particular, sufficient conditions on the measure V, for which one has the inequality[Figure not available: see fulltext.].
AB - For the domains of the space Rn, n≥2, with a finite number of conical points, one proves embedding theorems for the spaces of harmonic functions which generalize the Littlewood-Paley and Carleson theorems. Let ∥·∥p, Ω be a norm which is transferred in some natural manner to the space of harmonic functions in the domain Ω and which in the unit circle of the space ℝ2 turns into the norm of the Hardy space Hp and let ℋp(Ω) be the space of harmonic functions in Ω with this norm. One establishes, in particular, sufficient conditions on the measure V, for which one has the inequality[Figure not available: see fulltext.].
UR - http://www.scopus.com/inward/record.url?scp=0039891566&partnerID=8YFLogxK
U2 - 10.1007/BF01562062
DO - 10.1007/BF01562062
M3 - Article
AN - SCOPUS:0039891566
VL - 14
SP - 1173
EP - 1176
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 2
ER -
ID: 86666826