DOI

For the domains of the space Rn, n≥2, with a finite number of conical points, one proves embedding theorems for the spaces of harmonic functions which generalize the Littlewood-Paley and Carleson theorems. Let ∥·∥p, Ω be a norm which is transferred in some natural manner to the space of harmonic functions in the domain Ω and which in the unit circle of the space ℝ2 turns into the norm of the Hardy space Hp and let ℋp(Ω) be the space of harmonic functions in Ω with this norm. One establishes, in particular, sufficient conditions on the measure V, for which one has the inequality[Figure not available: see fulltext.].

Язык оригиналаанглийский
Страницы (с-по)1173-1176
Число страниц4
ЖурналJournal of Soviet Mathematics
Том14
Номер выпуска2
DOI
СостояниеОпубликовано - авг 1980
Опубликовано для внешнего пользованияДа

    Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

ID: 86666826