Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
For the domains of the space Rn, n≥2, with a finite number of conical points, one proves embedding theorems for the spaces of harmonic functions which generalize the Littlewood-Paley and Carleson theorems. Let ∥·∥p, Ω be a norm which is transferred in some natural manner to the space of harmonic functions in the domain Ω and which in the unit circle of the space ℝ2 turns into the norm of the Hardy space Hp and let ℋp(Ω) be the space of harmonic functions in Ω with this norm. One establishes, in particular, sufficient conditions on the measure V, for which one has the inequality[Figure not available: see fulltext.].
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 1173-1176 |
| Число страниц | 4 |
| Журнал | Journal of Soviet Mathematics |
| Том | 14 |
| Номер выпуска | 2 |
| DOI | |
| Состояние | Опубликовано - авг 1980 |
| Опубликовано для внешнего пользования | Да |
ID: 86666826