Standard

Singularly perturbed linear ordinary differential equations with turning points. / Bauer, S. M.; Filippov, S. B.; Smirnov, A. L.; Tovstik, P. E.; Vaillancourt, R.

International Series of Numerical Mathematics. Springer Nature, 2015. стр. 239-290 (International Series of Numerical Mathematics; Том 167).

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийглава/разделРецензирование

Harvard

Bauer, SM, Filippov, SB, Smirnov, AL, Tovstik, PE & Vaillancourt, R 2015, Singularly perturbed linear ordinary differential equations with turning points. в International Series of Numerical Mathematics. International Series of Numerical Mathematics, Том. 167, Springer Nature, стр. 239-290. https://doi.org/10.1007/978-3-319-18311-4_5

APA

Bauer, S. M., Filippov, S. B., Smirnov, A. L., Tovstik, P. E., & Vaillancourt, R. (2015). Singularly perturbed linear ordinary differential equations with turning points. в International Series of Numerical Mathematics (стр. 239-290). (International Series of Numerical Mathematics; Том 167). Springer Nature. https://doi.org/10.1007/978-3-319-18311-4_5

Vancouver

Bauer SM, Filippov SB, Smirnov AL, Tovstik PE, Vaillancourt R. Singularly perturbed linear ordinary differential equations with turning points. в International Series of Numerical Mathematics. Springer Nature. 2015. стр. 239-290. (International Series of Numerical Mathematics). https://doi.org/10.1007/978-3-319-18311-4_5

Author

Bauer, S. M. ; Filippov, S. B. ; Smirnov, A. L. ; Tovstik, P. E. ; Vaillancourt, R. / Singularly perturbed linear ordinary differential equations with turning points. International Series of Numerical Mathematics. Springer Nature, 2015. стр. 239-290 (International Series of Numerical Mathematics).

BibTeX

@inbook{6a03caf2ce3a4f50b9c3cda3d4dab13c,
title = "Singularly perturbed linear ordinary differential equations with turning points",
abstract = "In this chapter, we consider systems of linear ordinary differential equations with variable coefficients and a small parameter μ in the derivative terms.",
author = "Bauer, {S. M.} and Filippov, {S. B.} and Smirnov, {A. L.} and Tovstik, {P. E.} and R. Vaillancourt",
year = "2015",
month = jan,
day = "1",
doi = "10.1007/978-3-319-18311-4_5",
language = "English",
series = "International Series of Numerical Mathematics",
publisher = "Springer Nature",
pages = "239--290",
booktitle = "International Series of Numerical Mathematics",
address = "Germany",

}

RIS

TY - CHAP

T1 - Singularly perturbed linear ordinary differential equations with turning points

AU - Bauer, S. M.

AU - Filippov, S. B.

AU - Smirnov, A. L.

AU - Tovstik, P. E.

AU - Vaillancourt, R.

PY - 2015/1/1

Y1 - 2015/1/1

N2 - In this chapter, we consider systems of linear ordinary differential equations with variable coefficients and a small parameter μ in the derivative terms.

AB - In this chapter, we consider systems of linear ordinary differential equations with variable coefficients and a small parameter μ in the derivative terms.

UR - http://www.scopus.com/inward/record.url?scp=85085339168&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-18311-4_5

DO - 10.1007/978-3-319-18311-4_5

M3 - Chapter

AN - SCOPUS:85085339168

T3 - International Series of Numerical Mathematics

SP - 239

EP - 290

BT - International Series of Numerical Mathematics

PB - Springer Nature

ER -

ID: 53751389