Standard

Singularly perturbed linear ordinary differential equations with turning points. / Bauer, S. M.; Filippov, S. B.; Smirnov, A. L.; Tovstik, P. E.; Vaillancourt, R.

International Series of Numerical Mathematics. Springer Nature, 2015. p. 239-290 (International Series of Numerical Mathematics; Vol. 167).

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Harvard

Bauer, SM, Filippov, SB, Smirnov, AL, Tovstik, PE & Vaillancourt, R 2015, Singularly perturbed linear ordinary differential equations with turning points. in International Series of Numerical Mathematics. International Series of Numerical Mathematics, vol. 167, Springer Nature, pp. 239-290. https://doi.org/10.1007/978-3-319-18311-4_5

APA

Bauer, S. M., Filippov, S. B., Smirnov, A. L., Tovstik, P. E., & Vaillancourt, R. (2015). Singularly perturbed linear ordinary differential equations with turning points. In International Series of Numerical Mathematics (pp. 239-290). (International Series of Numerical Mathematics; Vol. 167). Springer Nature. https://doi.org/10.1007/978-3-319-18311-4_5

Vancouver

Bauer SM, Filippov SB, Smirnov AL, Tovstik PE, Vaillancourt R. Singularly perturbed linear ordinary differential equations with turning points. In International Series of Numerical Mathematics. Springer Nature. 2015. p. 239-290. (International Series of Numerical Mathematics). https://doi.org/10.1007/978-3-319-18311-4_5

Author

Bauer, S. M. ; Filippov, S. B. ; Smirnov, A. L. ; Tovstik, P. E. ; Vaillancourt, R. / Singularly perturbed linear ordinary differential equations with turning points. International Series of Numerical Mathematics. Springer Nature, 2015. pp. 239-290 (International Series of Numerical Mathematics).

BibTeX

@inbook{6a03caf2ce3a4f50b9c3cda3d4dab13c,
title = "Singularly perturbed linear ordinary differential equations with turning points",
abstract = "In this chapter, we consider systems of linear ordinary differential equations with variable coefficients and a small parameter μ in the derivative terms.",
author = "Bauer, {S. M.} and Filippov, {S. B.} and Smirnov, {A. L.} and Tovstik, {P. E.} and R. Vaillancourt",
year = "2015",
month = jan,
day = "1",
doi = "10.1007/978-3-319-18311-4_5",
language = "English",
series = "International Series of Numerical Mathematics",
publisher = "Springer Nature",
pages = "239--290",
booktitle = "International Series of Numerical Mathematics",
address = "Germany",

}

RIS

TY - CHAP

T1 - Singularly perturbed linear ordinary differential equations with turning points

AU - Bauer, S. M.

AU - Filippov, S. B.

AU - Smirnov, A. L.

AU - Tovstik, P. E.

AU - Vaillancourt, R.

PY - 2015/1/1

Y1 - 2015/1/1

N2 - In this chapter, we consider systems of linear ordinary differential equations with variable coefficients and a small parameter μ in the derivative terms.

AB - In this chapter, we consider systems of linear ordinary differential equations with variable coefficients and a small parameter μ in the derivative terms.

UR - http://www.scopus.com/inward/record.url?scp=85085339168&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-18311-4_5

DO - 10.1007/978-3-319-18311-4_5

M3 - Chapter

AN - SCOPUS:85085339168

T3 - International Series of Numerical Mathematics

SP - 239

EP - 290

BT - International Series of Numerical Mathematics

PB - Springer Nature

ER -

ID: 53751389