Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Self-similarity for information flows with a random load free on distribution : The long memory case. / Rusakov, Oleg; Yakubovich, Yuri; Ласкин, Михаил Борисович.
Proceedings - 2018 2nd European Conference on Electrical Engineering and Computer Science, EECS 2018. Institute of Electrical and Electronics Engineers Inc., 2019. стр. 183-189 8910097 (Proceedings - 2018 2nd European Conference on Electrical Engineering and Computer Science, EECS 2018).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Self-similarity for information flows with a random load free on distribution
T2 - 2nd European Conference on Electrical Engineering and Computer Science, EECS 2018
AU - Rusakov, Oleg
AU - Yakubovich, Yuri
AU - Ласкин, Михаил Борисович
PY - 2019
Y1 - 2019
N2 - We consider a stochastic model of changing random loads of information flows. The basic random process we exploit is a Double Stochastic Poisson process which manages the change points of the random loads. This Double Stochastic Poisson process is equipped with a Gamma distributed random intensity. The shape parameter of the random intensity equals 2-2H, where 1/2 < H < 1 is the Hurst constant for the corresponding long memory self-similarity. We consider pathwise integral of such kind random load process. Turning to infinity jointly the scale parameter of the random intensity and the variance of the random loads we obtain in a limit a random process with continuous piecewise linear trajectories. Such limit process has the covariance which explicitly coincides with the fractional Brownian motion covariance.
AB - We consider a stochastic model of changing random loads of information flows. The basic random process we exploit is a Double Stochastic Poisson process which manages the change points of the random loads. This Double Stochastic Poisson process is equipped with a Gamma distributed random intensity. The shape parameter of the random intensity equals 2-2H, where 1/2 < H < 1 is the Hurst constant for the corresponding long memory self-similarity. We consider pathwise integral of such kind random load process. Turning to infinity jointly the scale parameter of the random intensity and the variance of the random loads we obtain in a limit a random process with continuous piecewise linear trajectories. Such limit process has the covariance which explicitly coincides with the fractional Brownian motion covariance.
KW - Fractional Brownian motion
KW - Laplace transform
KW - Long memory
KW - Poisson process
KW - Random intensity
UR - http://www.scopus.com/inward/record.url?scp=85076376056&partnerID=8YFLogxK
U2 - 10.1109/EECS.2018.00042
DO - 10.1109/EECS.2018.00042
M3 - Conference contribution
T3 - Proceedings - 2018 2nd European Conference on Electrical Engineering and Computer Science, EECS 2018
SP - 183
EP - 189
BT - Proceedings - 2018 2nd European Conference on Electrical Engineering and Computer Science, EECS 2018
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 20 December 2018 through 22 December 2018
ER -
ID: 49944692