Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
We consider a stochastic model of changing random loads of information flows. The basic random process we exploit is a Double Stochastic Poisson process which manages the change points of the random loads. This Double Stochastic Poisson process is equipped with a Gamma distributed random intensity. The shape parameter of the random intensity equals 2-2H, where 1/2 < H < 1 is the Hurst constant for the corresponding long memory self-similarity. We consider pathwise integral of such kind random load process. Turning to infinity jointly the scale parameter of the random intensity and the variance of the random loads we obtain in a limit a random process with continuous piecewise linear trajectories. Such limit process has the covariance which explicitly coincides with the fractional Brownian motion covariance.
Язык оригинала | английский |
---|---|
Название основной публикации | Proceedings - 2018 2nd European Conference on Electrical Engineering and Computer Science, EECS 2018 |
Издатель | Institute of Electrical and Electronics Engineers Inc. |
Страницы | 183-189 |
Число страниц | 7 |
ISBN (электронное издание) | 9781728119298 |
DOI | |
Состояние | Опубликовано - 2019 |
Событие | 2nd European Conference on Electrical Engineering and Computer Science, EECS 2018 - Bern, Швейцария Продолжительность: 20 дек 2018 → 22 дек 2018 |
Название | Proceedings - 2018 2nd European Conference on Electrical Engineering and Computer Science, EECS 2018 |
---|
конференция | 2nd European Conference on Electrical Engineering and Computer Science, EECS 2018 |
---|---|
Страна/Tерритория | Швейцария |
Город | Bern |
Период | 20/12/18 → 22/12/18 |
ID: 49944692