DOI

One of the most important properties of the recently discovered “rods-in-belt” supramolecular complexes, containing Au-Cu or Au-Ag cluster core, is the possibility to tune their electronic and photophysical properties through modification of the ligand environment. This opens great perspectives for their applications in light emitting devices and in bio-imaging. The high structural ordering and self-assembling properties of these unique objects may be used to design artificial nanostructures with a complex topology which could become ideal building blocks for next generation electronics. Here we present a detailed experimental study of the electronic structure of the “rods-in-belt” supramolecular complexes. Applying X-ray photoemission and absorption spectroscopy we systematically unravel the structure of their occupied and unoccupied electronic states near the Fermi level. The major contribution to the highest occupied molecular orbitals is made by the triple bonded carbons hosted in the dialkynyl-gold “rods
Язык оригиналаанглийский
Страницы (с-по)12385-12392
ЖурналJournal of Physical Chemistry C
Том117
Номер выпуска23
DOI
СостояниеОпубликовано - 2013

ID: 7371140