Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Randomized Algorithms with Adaptive Tuning of Parameters for Detecting Communities in Graphs. / Amelina, Natalia; Granichin, Oleg; Granichina, Olga; Kirianovskii, Ilia; Prodanov, Timofey.
2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC). IEEE Canada, 2016. стр. 6222-6227 (IEEE Conference on Decision and Control).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Randomized Algorithms with Adaptive Tuning of Parameters for Detecting Communities in Graphs
AU - Amelina, Natalia
AU - Granichin, Oleg
AU - Granichina, Olga
AU - Kirianovskii, Ilia
AU - Prodanov, Timofey
PY - 2016
Y1 - 2016
N2 - In the last years, the study of complex networks grows rapidly and search of tightly connected groups of nodes, or community detection, has proved to be a powerful tool for analyzing the real systems. Randomized algorithms are effective for detecting communities but there is no set of optimal parameters that makes these algorithms create a good partitions into communities for every input complex network. In this paper we consider two randomized algorithms and, based on the stochastic approximation, propose two new adaptive modifications that adjust parameters to the input data and create a good partitions for wider range of input networks.
AB - In the last years, the study of complex networks grows rapidly and search of tightly connected groups of nodes, or community detection, has proved to be a powerful tool for analyzing the real systems. Randomized algorithms are effective for detecting communities but there is no set of optimal parameters that makes these algorithms create a good partitions into communities for every input complex network. In this paper we consider two randomized algorithms and, based on the stochastic approximation, propose two new adaptive modifications that adjust parameters to the input data and create a good partitions for wider range of input networks.
KW - STOCHASTIC-APPROXIMATION
U2 - 10.1109/CDC.2016.7799226
DO - 10.1109/CDC.2016.7799226
M3 - статья в сборнике материалов конференции
T3 - IEEE Conference on Decision and Control
SP - 6222
EP - 6227
BT - 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC)
PB - IEEE Canada
Y2 - 12 December 2016 through 14 December 2016
ER -
ID: 74015359