DOI

In the last years, the study of complex networks grows rapidly and search of tightly connected groups of nodes, or community detection, has proved to be a powerful tool for analyzing the real systems. Randomized algorithms are effective for detecting communities but there is no set of optimal parameters that makes these algorithms create a good partitions into communities for every input complex network. In this paper we consider two randomized algorithms and, based on the stochastic approximation, propose two new adaptive modifications that adjust parameters to the input data and create a good partitions for wider range of input networks.

Язык оригиналаАнглийский
Название основной публикации2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC)
ИздательIEEE Canada
Страницы6222-6227
Число страниц6
DOI
СостояниеОпубликовано - 2016
Событие55th IEEE Conference on Decision and Control (CDC) - Las Vegas, Соединенные Штаты Америки
Продолжительность: 12 дек 201614 дек 2016

Серия публикаций

НазваниеIEEE Conference on Decision and Control
ИздательIEEE
ISSN (печатное издание)0743-1546

конференция

конференция55th IEEE Conference on Decision and Control (CDC)
Страна/TерриторияСоединенные Штаты Америки
ГородLas Vegas
Период12/12/1614/12/16

ID: 74015359