DOI

In the present study, a possibility of neural networks implementation for evaluation of transport coefficients in atomic gases taking into account electronic excitation and in molecular gases with electronic, vibrational and rotational degrees of freedom is discussed. Atomic nitrogen N and oxygen O, molecular nitrogen N 2 and oxygen O 2, as well as mixtures (N2, N, O2, O) and (N2, N, O2, O, Ar) are considered in the one-temperature approach of the kinetic theory. The results of exact calculations are compared to the neural network-based simulations. It is shown that for single-component gases, the proposed approach yields good accuracy and calculation speedup up to 3 times for atoms and up to 19 times for molecules. The speedup is significant for multi-component mixtures and increases with the mixture complexity, attaining for four- A nd five-component mixtures from 597 to 1196 times correspondingly. Ways to improve the accuracy of neural-network predictions of multi-component mixtures transport coefficients are discussed.

Язык оригиналаанглийский
Номер статьи012024
Число страниц8
ЖурналJournal of Physics: Conference Series
Том1959
Номер выпуска1
DOI
СостояниеОпубликовано - 1 июл 2021
СобытиеМеждународная научная конференция по механике «IX Поляховские чтения» - СПбГУ, Санкт-Петербург, Российская Федерация
Продолжительность: 9 мар 202112 мар 2021
Номер конференции: IX
https://events.spbu.ru/events/polyakhov-2021

    Предметные области Scopus

  • Физика и астрономия (все)

ID: 78884491