Standard

Optimal designs for estimating individual coefficients in polynomial regression with no intercept. / Dette, Holger; Melas, Viatcheslav B. ; Shpilev, Petr V.

в: Statistics and Probability Letters, Том 158, 108636, 03.2020.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{4f892025dd7242fbb595369893d4ab00,
title = "Optimal designs for estimating individual coefficients in polynomial regression with no intercept",
abstract = "We identify optimal designs for estimating individual coefficients in a polynomial regression with no intercept. Here the regression functions do not form a Chebyshev system such that the seminal results of Studden (1968) characterizing c-optimal designs are not applicable.",
keywords = "Polynomial regression, Chebyshev system, c-optimal design, MODELS",
author = "Holger Dette and Melas, {Viatcheslav B.} and Shpilev, {Petr V.}",
note = "Publisher Copyright: {\textcopyright} 2019",
year = "2020",
month = mar,
doi = "10.1016/j.spl.2019.108636",
language = "English",
volume = "158",
journal = "Statistics and Probability Letters",
issn = "0167-7152",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Optimal designs for estimating individual coefficients in polynomial regression with no intercept

AU - Dette, Holger

AU - Melas, Viatcheslav B.

AU - Shpilev, Petr V.

N1 - Publisher Copyright: © 2019

PY - 2020/3

Y1 - 2020/3

N2 - We identify optimal designs for estimating individual coefficients in a polynomial regression with no intercept. Here the regression functions do not form a Chebyshev system such that the seminal results of Studden (1968) characterizing c-optimal designs are not applicable.

AB - We identify optimal designs for estimating individual coefficients in a polynomial regression with no intercept. Here the regression functions do not form a Chebyshev system such that the seminal results of Studden (1968) characterizing c-optimal designs are not applicable.

KW - Polynomial regression

KW - Chebyshev system

KW - c-optimal design

KW - MODELS

UR - https://proxy.library.spbu.ru:2068/science/article/pii/S0167715219302822?via%3Dihub

UR - http://www.scopus.com/inward/record.url?scp=85073033391&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/db99efc8-2617-3dd2-800e-3aad0ad877fa/

U2 - 10.1016/j.spl.2019.108636

DO - 10.1016/j.spl.2019.108636

M3 - Article

VL - 158

JO - Statistics and Probability Letters

JF - Statistics and Probability Letters

SN - 0167-7152

M1 - 108636

ER -

ID: 47740517