Research output: Contribution to journal › Article › peer-review
Optimal designs for estimating individual coefficients in polynomial regression with no intercept. / Dette, Holger; Melas, Viatcheslav B. ; Shpilev, Petr V.
In: Statistics and Probability Letters, Vol. 158, 108636, 03.2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Optimal designs for estimating individual coefficients in polynomial regression with no intercept
AU - Dette, Holger
AU - Melas, Viatcheslav B.
AU - Shpilev, Petr V.
N1 - Publisher Copyright: © 2019
PY - 2020/3
Y1 - 2020/3
N2 - We identify optimal designs for estimating individual coefficients in a polynomial regression with no intercept. Here the regression functions do not form a Chebyshev system such that the seminal results of Studden (1968) characterizing c-optimal designs are not applicable.
AB - We identify optimal designs for estimating individual coefficients in a polynomial regression with no intercept. Here the regression functions do not form a Chebyshev system such that the seminal results of Studden (1968) characterizing c-optimal designs are not applicable.
KW - Polynomial regression
KW - Chebyshev system
KW - c-optimal design
KW - MODELS
UR - https://proxy.library.spbu.ru:2068/science/article/pii/S0167715219302822?via%3Dihub
UR - http://www.scopus.com/inward/record.url?scp=85073033391&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/db99efc8-2617-3dd2-800e-3aad0ad877fa/
U2 - 10.1016/j.spl.2019.108636
DO - 10.1016/j.spl.2019.108636
M3 - Article
VL - 158
JO - Statistics and Probability Letters
JF - Statistics and Probability Letters
SN - 0167-7152
M1 - 108636
ER -
ID: 47740517