Standard

On the stability of wave processes in a rotating electrically conducting fluid. / Peregudin, S.I. ; Peregudina, E.S. ; Kholodova, S.E. .

в: ВЫЧИСЛИТЕЛЬНЫЕ ТЕХНОЛОГИИ, № 3, 22.09.2018, стр. 184-189.

Результаты исследований: Научные публикации в периодических изданияхстатья в журнале по материалам конференцииРецензирование

Harvard

Peregudin, SI, Peregudina, ES & Kholodova, SE 2018, 'On the stability of wave processes in a rotating electrically conducting fluid', ВЫЧИСЛИТЕЛЬНЫЕ ТЕХНОЛОГИИ, № 3, стр. 184-189. <http://www.ict.nsc.ru/jct/getfile.php?id=1920>

APA

Peregudin, S. I., Peregudina, E. S., & Kholodova, S. E. (2018). On the stability of wave processes in a rotating electrically conducting fluid. ВЫЧИСЛИТЕЛЬНЫЕ ТЕХНОЛОГИИ, (3), 184-189. http://www.ict.nsc.ru/jct/getfile.php?id=1920

Vancouver

Peregudin SI, Peregudina ES, Kholodova SE. On the stability of wave processes in a rotating electrically conducting fluid. ВЫЧИСЛИТЕЛЬНЫЕ ТЕХНОЛОГИИ. 2018 Сент. 22;(3):184-189.

Author

Peregudin, S.I. ; Peregudina, E.S. ; Kholodova, S.E. . / On the stability of wave processes in a rotating electrically conducting fluid. в: ВЫЧИСЛИТЕЛЬНЫЕ ТЕХНОЛОГИИ. 2018 ; № 3. стр. 184-189.

BibTeX

@article{51a3603c40864424b513dcf6cf3367e2,
title = "On the stability of wave processes in a rotating electrically conducting fluid",
abstract = "The paper puts forward a mathematical model of dynamics of spatial large-scale motions in a rotating layer of electrically conducting incompressible perfect fluid of variable depth with due account of dissipative effects. The resulting boundary-value problem is reduced to a vector system of partial differential equations for any values of the Reynolds number. Theoretical analysis of the so-obtained analytical solution reveals the effect of the magnetic field diffusion on the stability of the wave mode — namely, with the removed external magnetic field, the diffusion of the magnetic field promotes its damping. Besides, a criterion of stability of a wave mode is obtained.",
keywords = "quasi-geostrophic motion, rotating fluid",
author = "S.I. Peregudin and E.S. Peregudina and S.E. Kholodova",
note = "Alfven, H., Falthammar, C.-G.: Cosmic Electrodynamics. Oxford, Clarendon; 9th International Conference on Computational and Information Technologies in Science, Engineering and Education, CITech 2018 ; Conference date: 25-09-2018 Through 28-09-2018",
year = "2018",
month = sep,
day = "22",
language = "English",
pages = "184--189",
journal = "Journal of Computational Technologies",
issn = "1560-7534",
publisher = "Institute of Computational Technologies SB RAS",
number = "3",

}

RIS

TY - JOUR

T1 - On the stability of wave processes in a rotating electrically conducting fluid

AU - Peregudin, S.I.

AU - Peregudina, E.S.

AU - Kholodova, S.E.

N1 - Alfven, H., Falthammar, C.-G.: Cosmic Electrodynamics. Oxford, Clarendon

PY - 2018/9/22

Y1 - 2018/9/22

N2 - The paper puts forward a mathematical model of dynamics of spatial large-scale motions in a rotating layer of electrically conducting incompressible perfect fluid of variable depth with due account of dissipative effects. The resulting boundary-value problem is reduced to a vector system of partial differential equations for any values of the Reynolds number. Theoretical analysis of the so-obtained analytical solution reveals the effect of the magnetic field diffusion on the stability of the wave mode — namely, with the removed external magnetic field, the diffusion of the magnetic field promotes its damping. Besides, a criterion of stability of a wave mode is obtained.

AB - The paper puts forward a mathematical model of dynamics of spatial large-scale motions in a rotating layer of electrically conducting incompressible perfect fluid of variable depth with due account of dissipative effects. The resulting boundary-value problem is reduced to a vector system of partial differential equations for any values of the Reynolds number. Theoretical analysis of the so-obtained analytical solution reveals the effect of the magnetic field diffusion on the stability of the wave mode — namely, with the removed external magnetic field, the diffusion of the magnetic field promotes its damping. Besides, a criterion of stability of a wave mode is obtained.

KW - quasi-geostrophic motion

KW - rotating fluid

M3 - Conference article

SP - 184

EP - 189

JO - Journal of Computational Technologies

JF - Journal of Computational Technologies

SN - 1560-7534

IS - 3

T2 - 9th International Conference on Computational and Information Technologies in Science, Engineering and Education, CITech 2018

Y2 - 25 September 2018 through 28 September 2018

ER -

ID: 36092650