Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On the number of rational points on a strictly convex curve. / Petrov, F. V.
в: Functional Analysis and its Applications, Том 40, № 1, 01.01.2006, стр. 24-33.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On the number of rational points on a strictly convex curve
AU - Petrov, F. V.
PY - 2006/1/1
Y1 - 2006/1/1
N2 - Let γ be a bounded convex curve on the plane. Then #(γ ∩ (ℤ/n) 2) = o(n 2/3). This strengthens the classical result due to Jarník [J] (the upper bound cn 2/3) and disproves the conjecture on the existence of a so-called universal Jarník curve.
AB - Let γ be a bounded convex curve on the plane. Then #(γ ∩ (ℤ/n) 2) = o(n 2/3). This strengthens the classical result due to Jarník [J] (the upper bound cn 2/3) and disproves the conjecture on the existence of a so-called universal Jarník curve.
KW - Affine length
KW - Convex curve
KW - Lattice point
UR - http://www.scopus.com/inward/record.url?scp=33644897337&partnerID=8YFLogxK
U2 - 10.1007/s10688-006-0003-6
DO - 10.1007/s10688-006-0003-6
M3 - Article
AN - SCOPUS:33644897337
VL - 40
SP - 24
EP - 33
JO - Functional Analysis and its Applications
JF - Functional Analysis and its Applications
SN - 0016-2663
IS - 1
ER -
ID: 49850509