Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
The paper considers the possibility of thunderstorm forecasting using only dynamical and microphysical parameters of the cloud, simulated by the 1.5D model with further processing by machine learning methods. The problem of feature selection is discussed in two aspects: selection of the optimal values of time and height when and where the output model data are fixed and selection of fixed set of the most representative cloud parameters (features) among all output cloud characteristics. Five machine learning methods are considered: Support Vector Machine (SVM), Logistic Regression, Ridge Regression, boosted k-nearest neighbour algorithm and neural networks. It is shown that forecast accuracy of all five methods reaches values exceeding 90%.
Язык оригинала | английский |
---|---|
Название основной публикации | Computational Science and Its Applications – ICCSA 2020 - 20th International Conference, Proceedings |
Редакторы | Osvaldo Gervasi, Beniamino Murgante, Sanjay Misra, Chiara Garau, Ivan Blecic, David Taniar, Bernady O. Apduhan, Ana Maria A.C. Rocha, Eufemia Tarantino, Carmelo Maria Torre, Yeliz Karaca |
Издатель | Springer Nature |
Страницы | 82-93 |
Число страниц | 12 |
ISBN (печатное издание) | 9783030588168 |
DOI | |
Состояние | Опубликовано - 2020 |
Событие | 20th International Conference on Computational Science and Its Applications, ICCSA 2020 - Cagliari, Италия Продолжительность: 1 июл 2020 → 4 июл 2020 http://iccsa.org/ |
Название | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Том | 12254 LNCS |
ISSN (печатное издание) | 0302-9743 |
ISSN (электронное издание) | 1611-3349 |
конференция | 20th International Conference on Computational Science and Its Applications, ICCSA 2020 |
---|---|
Сокращенное название | ICCSA 2020 |
Страна/Tерритория | Италия |
Город | Cagliari |
Период | 1/07/20 → 4/07/20 |
Сайт в сети Internet |
ID: 70311027