DOI

The paper considers the possibility of thunderstorm forecasting using only dynamical and microphysical parameters of the cloud, simulated by the 1.5D model with further processing by machine learning methods. The problem of feature selection is discussed in two aspects: selection of the optimal values of time and height when and where the output model data are fixed and selection of fixed set of the most representative cloud parameters (features) among all output cloud characteristics. Five machine learning methods are considered: Support Vector Machine (SVM), Logistic Regression, Ridge Regression, boosted k-nearest neighbour algorithm and neural networks. It is shown that forecast accuracy of all five methods reaches values exceeding 90%.

Язык оригиналаанглийский
Название основной публикацииComputational Science and Its Applications – ICCSA 2020 - 20th International Conference, Proceedings
РедакторыOsvaldo Gervasi, Beniamino Murgante, Sanjay Misra, Chiara Garau, Ivan Blecic, David Taniar, Bernady O. Apduhan, Ana Maria A.C. Rocha, Eufemia Tarantino, Carmelo Maria Torre, Yeliz Karaca
ИздательSpringer Nature
Страницы82-93
Число страниц12
ISBN (печатное издание)9783030588168
DOI
СостояниеОпубликовано - 2020
Событие20th International Conference on Computational Science and Its Applications, ICCSA 2020 - Cagliari, Италия
Продолжительность: 1 июл 20204 июл 2020
http://iccsa.org/

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том12254 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция20th International Conference on Computational Science and Its Applications, ICCSA 2020
Сокращенное названиеICCSA 2020
Страна/TерриторияИталия
ГородCagliari
Период1/07/204/07/20
Сайт в сети Internet

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 70311027