The paper considers the possibility of thunderstorm forecasting using only dynamical and microphysical parameters of the cloud, simulated by the 1.5D model with further processing by machine learning methods. The problem of feature selection is discussed in two aspects: selection of the optimal values of time and height when and where the output model data are fixed and selection of fixed set of the most representative cloud parameters (features) among all output cloud characteristics. Five machine learning methods are considered: Support Vector Machine (SVM), Logistic Regression, Ridge Regression, boosted k-nearest neighbour algorithm and neural networks. It is shown that forecast accuracy of all five methods reaches values exceeding 90%.

Original languageEnglish
Title of host publicationComputational Science and Its Applications – ICCSA 2020 - 20th International Conference, Proceedings
EditorsOsvaldo Gervasi, Beniamino Murgante, Sanjay Misra, Chiara Garau, Ivan Blecic, David Taniar, Bernady O. Apduhan, Ana Maria A.C. Rocha, Eufemia Tarantino, Carmelo Maria Torre, Yeliz Karaca
PublisherSpringer Nature
Pages82-93
Number of pages12
ISBN (Print)9783030588168
DOIs
StatePublished - 2020
Event20th International Conference on Computational Science and Its Applications, ICCSA 2020 - Cagliari, Italy
Duration: 1 Jul 20204 Jul 2020
http://iccsa.org/

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12254 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference20th International Conference on Computational Science and Its Applications, ICCSA 2020
Abbreviated titleICCSA 2020
Country/TerritoryItaly
CityCagliari
Period1/07/204/07/20
Internet address

    Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

    Research areas

  • Boosted k-nearest neighbour algorithm, Logistic Regression, Machine learning, Neural networks, Numerical model of convective cloud, Ridge Regression, Support Vector Machine (SVM), Thunderstorm forecasting, Weather forecasting

ID: 70311027