Standard

On operator estimates in homogenization of non-local operators of convolution type. / Пятницкий, Андрей Львович; Слоущ, Владимир Анатольевич; Суслина, Татьяна Александровна; Жижина, Елена Анатольевна.

в: Journal of Differential Equations, Том 352, 15.04.2023, стр. 153-188.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Пятницкий, АЛ, Слоущ, ВА, Суслина, ТА & Жижина, ЕА 2023, 'On operator estimates in homogenization of non-local operators of convolution type', Journal of Differential Equations, Том. 352, стр. 153-188. https://doi.org/10.1016/j.jde.2022.12.036

APA

Vancouver

Пятницкий АЛ, Слоущ ВА, Суслина ТА, Жижина ЕА. On operator estimates in homogenization of non-local operators of convolution type. Journal of Differential Equations. 2023 Апр. 15;352:153-188. https://doi.org/10.1016/j.jde.2022.12.036

Author

Пятницкий, Андрей Львович ; Слоущ, Владимир Анатольевич ; Суслина, Татьяна Александровна ; Жижина, Елена Анатольевна. / On operator estimates in homogenization of non-local operators of convolution type. в: Journal of Differential Equations. 2023 ; Том 352. стр. 153-188.

BibTeX

@article{bfe3b9ab52524100838f43b4b54fed24,
title = "On operator estimates in homogenization of non-local operators of convolution type",
abstract = "The paper studies a bounded symmetric operator Aε in L2(Rd) with (Aεu)(x)=ε−d−2∫Rda((x−y)/ε)μ(x/ε,y/ε)(u(x)−u(y))dy; here ε is a small positive parameter. It is assumed that a(x) is a non-negative L1(Rd) function such that a(−x)=a(x) and the moments Mk=∫Rd|x|ka(x)dx, k=1,2,3, are finite. It is also assumed that μ(x,y) is Zd-periodic both in x and y function such that μ(x,y)=μ(y,x) and 0",
keywords = "Convolution type operator, Effective operator, Operator estimates, Periodic homogenization",
author = "Пятницкий, {Андрей Львович} and Слоущ, {Владимир Анатольевич} and Суслина, {Татьяна Александровна} and Жижина, {Елена Анатольевна}",
year = "2023",
month = apr,
day = "15",
doi = "10.1016/j.jde.2022.12.036",
language = "English",
volume = "352",
pages = "153--188",
journal = "Journal of Differential Equations",
issn = "0022-0396",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - On operator estimates in homogenization of non-local operators of convolution type

AU - Пятницкий, Андрей Львович

AU - Слоущ, Владимир Анатольевич

AU - Суслина, Татьяна Александровна

AU - Жижина, Елена Анатольевна

PY - 2023/4/15

Y1 - 2023/4/15

N2 - The paper studies a bounded symmetric operator Aε in L2(Rd) with (Aεu)(x)=ε−d−2∫Rda((x−y)/ε)μ(x/ε,y/ε)(u(x)−u(y))dy; here ε is a small positive parameter. It is assumed that a(x) is a non-negative L1(Rd) function such that a(−x)=a(x) and the moments Mk=∫Rd|x|ka(x)dx, k=1,2,3, are finite. It is also assumed that μ(x,y) is Zd-periodic both in x and y function such that μ(x,y)=μ(y,x) and 0

AB - The paper studies a bounded symmetric operator Aε in L2(Rd) with (Aεu)(x)=ε−d−2∫Rda((x−y)/ε)μ(x/ε,y/ε)(u(x)−u(y))dy; here ε is a small positive parameter. It is assumed that a(x) is a non-negative L1(Rd) function such that a(−x)=a(x) and the moments Mk=∫Rd|x|ka(x)dx, k=1,2,3, are finite. It is also assumed that μ(x,y) is Zd-periodic both in x and y function such that μ(x,y)=μ(y,x) and 0

KW - Convolution type operator

KW - Effective operator

KW - Operator estimates

KW - Periodic homogenization

UR - https://www.mendeley.com/catalogue/605e0964-5a66-359b-8960-19f270253ddb/

U2 - 10.1016/j.jde.2022.12.036

DO - 10.1016/j.jde.2022.12.036

M3 - Article

VL - 352

SP - 153

EP - 188

JO - Journal of Differential Equations

JF - Journal of Differential Equations

SN - 0022-0396

ER -

ID: 101771212