Research output: Contribution to journal › Article › peer-review
On operator estimates in homogenization of non-local operators of convolution type. / Пятницкий, Андрей Львович; Слоущ, Владимир Анатольевич; Суслина, Татьяна Александровна; Жижина, Елена Анатольевна.
In: Journal of Differential Equations, Vol. 352, 15.04.2023, p. 153-188.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - On operator estimates in homogenization of non-local operators of convolution type
AU - Пятницкий, Андрей Львович
AU - Слоущ, Владимир Анатольевич
AU - Суслина, Татьяна Александровна
AU - Жижина, Елена Анатольевна
PY - 2023/4/15
Y1 - 2023/4/15
N2 - The paper studies a bounded symmetric operator Aε in L2(Rd) with (Aεu)(x)=ε−d−2∫Rda((x−y)/ε)μ(x/ε,y/ε)(u(x)−u(y))dy; here ε is a small positive parameter. It is assumed that a(x) is a non-negative L1(Rd) function such that a(−x)=a(x) and the moments Mk=∫Rd|x|ka(x)dx, k=1,2,3, are finite. It is also assumed that μ(x,y) is Zd-periodic both in x and y function such that μ(x,y)=μ(y,x) and 0
AB - The paper studies a bounded symmetric operator Aε in L2(Rd) with (Aεu)(x)=ε−d−2∫Rda((x−y)/ε)μ(x/ε,y/ε)(u(x)−u(y))dy; here ε is a small positive parameter. It is assumed that a(x) is a non-negative L1(Rd) function such that a(−x)=a(x) and the moments Mk=∫Rd|x|ka(x)dx, k=1,2,3, are finite. It is also assumed that μ(x,y) is Zd-periodic both in x and y function such that μ(x,y)=μ(y,x) and 0
KW - Convolution type operator
KW - Effective operator
KW - Operator estimates
KW - Periodic homogenization
UR - https://www.mendeley.com/catalogue/605e0964-5a66-359b-8960-19f270253ddb/
U2 - 10.1016/j.jde.2022.12.036
DO - 10.1016/j.jde.2022.12.036
M3 - Article
VL - 352
SP - 153
EP - 188
JO - Journal of Differential Equations
JF - Journal of Differential Equations
SN - 0022-0396
ER -
ID: 101771212