Standard

On Minimal Entire Solutions of the One-Dimensional Difference Schrödinger Equation with the Potential υ(z) = e −2πiz. / Fedotov, A. A.

в: Journal of Mathematical Sciences, Том 238, № 5, 07.05.2019, стр. 750-761.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{71c4ea752c8b4ea2980b035aa65705b1,
title = "On Minimal Entire Solutions of the One-Dimensional Difference Schr{\"o}dinger Equation with the Potential υ(z) = e −2πiz",
abstract = " Let z ∈ ℂ be a complex variable, and let h ∈ (0, 1) and p ∈ ℂ be parameters. For the equation ψ(z + h) + ψ(z − h) + e −2πiz ψ(z) = 2 cos(2πp)ψ(z), solutions having the minimal possible growth simultaneously as Im z → ∞ and as Im z → − ∞ are studied. In particular, it is shown that they satisfy one more difference equation ψ(z + 1) + ψ(z − 1) + e −2πiz/h ψ(z) = 2 cos(2πp/h)ψ(z). ",
author = "Fedotov, {A. A.}",
year = "2019",
month = may,
day = "7",
doi = "10.1007/s10958-019-04272-3",
language = "English",
volume = "238",
pages = "750--761",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "5",

}

RIS

TY - JOUR

T1 - On Minimal Entire Solutions of the One-Dimensional Difference Schrödinger Equation with the Potential υ(z) = e −2πiz

AU - Fedotov, A. A.

PY - 2019/5/7

Y1 - 2019/5/7

N2 - Let z ∈ ℂ be a complex variable, and let h ∈ (0, 1) and p ∈ ℂ be parameters. For the equation ψ(z + h) + ψ(z − h) + e −2πiz ψ(z) = 2 cos(2πp)ψ(z), solutions having the minimal possible growth simultaneously as Im z → ∞ and as Im z → − ∞ are studied. In particular, it is shown that they satisfy one more difference equation ψ(z + 1) + ψ(z − 1) + e −2πiz/h ψ(z) = 2 cos(2πp/h)ψ(z).

AB - Let z ∈ ℂ be a complex variable, and let h ∈ (0, 1) and p ∈ ℂ be parameters. For the equation ψ(z + h) + ψ(z − h) + e −2πiz ψ(z) = 2 cos(2πp)ψ(z), solutions having the minimal possible growth simultaneously as Im z → ∞ and as Im z → − ∞ are studied. In particular, it is shown that they satisfy one more difference equation ψ(z + 1) + ψ(z − 1) + e −2πiz/h ψ(z) = 2 cos(2πp/h)ψ(z).

UR - http://www.scopus.com/inward/record.url?scp=85064913583&partnerID=8YFLogxK

U2 - 10.1007/s10958-019-04272-3

DO - 10.1007/s10958-019-04272-3

M3 - Article

AN - SCOPUS:85064913583

VL - 238

SP - 750

EP - 761

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 5

ER -

ID: 41277085