Research output: Contribution to journal › Article › peer-review
On Minimal Entire Solutions of the One-Dimensional Difference Schrödinger Equation with the Potential υ(z) = e −2πiz. / Fedotov, A. A.
In: Journal of Mathematical Sciences, Vol. 238, No. 5, 07.05.2019, p. 750-761.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - On Minimal Entire Solutions of the One-Dimensional Difference Schrödinger Equation with the Potential υ(z) = e −2πiz
AU - Fedotov, A. A.
PY - 2019/5/7
Y1 - 2019/5/7
N2 - Let z ∈ ℂ be a complex variable, and let h ∈ (0, 1) and p ∈ ℂ be parameters. For the equation ψ(z + h) + ψ(z − h) + e −2πiz ψ(z) = 2 cos(2πp)ψ(z), solutions having the minimal possible growth simultaneously as Im z → ∞ and as Im z → − ∞ are studied. In particular, it is shown that they satisfy one more difference equation ψ(z + 1) + ψ(z − 1) + e −2πiz/h ψ(z) = 2 cos(2πp/h)ψ(z).
AB - Let z ∈ ℂ be a complex variable, and let h ∈ (0, 1) and p ∈ ℂ be parameters. For the equation ψ(z + h) + ψ(z − h) + e −2πiz ψ(z) = 2 cos(2πp)ψ(z), solutions having the minimal possible growth simultaneously as Im z → ∞ and as Im z → − ∞ are studied. In particular, it is shown that they satisfy one more difference equation ψ(z + 1) + ψ(z − 1) + e −2πiz/h ψ(z) = 2 cos(2πp/h)ψ(z).
UR - http://www.scopus.com/inward/record.url?scp=85064913583&partnerID=8YFLogxK
U2 - 10.1007/s10958-019-04272-3
DO - 10.1007/s10958-019-04272-3
M3 - Article
AN - SCOPUS:85064913583
VL - 238
SP - 750
EP - 761
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 5
ER -
ID: 41277085