Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On Bousfield's problem for solvable groups of finite Prüfer rank. / Ivanov, Sergei O.
в: Journal of Algebra, Том 501, 01.05.2018, стр. 473-502.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On Bousfield's problem for solvable groups of finite Prüfer rank
AU - Ivanov, Sergei O.
PY - 2018/5/1
Y1 - 2018/5/1
N2 - For a group G and R=Z,Z/p,Q we denote by GˆR the R-completion of G. We study the map Hn(G,K)→Hn(GˆR,K), where (R,K)=(Z,Z/p),(Z/p,Z/p),(Q,Q). We prove that H2(G,K)→H2(GˆR,K) is an epimorphism for a finitely generated solvable group G of finite Prüfer rank. In particular, Bousfield's HK-localisation of such groups coincides with the K-completion for K=Z/p,Q. Moreover, we prove that Hn(G,K)→Hn(GˆR,K) is an epimorphism for any n if G is a finitely presented group of the form G=M⋊C, where C is the infinite cyclic group and M is a C-module.
AB - For a group G and R=Z,Z/p,Q we denote by GˆR the R-completion of G. We study the map Hn(G,K)→Hn(GˆR,K), where (R,K)=(Z,Z/p),(Z/p,Z/p),(Q,Q). We prove that H2(G,K)→H2(GˆR,K) is an epimorphism for a finitely generated solvable group G of finite Prüfer rank. In particular, Bousfield's HK-localisation of such groups coincides with the K-completion for K=Z/p,Q. Moreover, we prove that Hn(G,K)→Hn(GˆR,K) is an epimorphism for any n if G is a finitely presented group of the form G=M⋊C, where C is the infinite cyclic group and M is a C-module.
KW - Bousfield's problem
KW - HR-localisation of groups
KW - Prüfer rank
KW - R-completion of groups
KW - Solvable groups
UR - http://www.scopus.com/inward/record.url?scp=85056317992&partnerID=8YFLogxK
U2 - 10.1016/j.jalgebra.2018.01.016
DO - 10.1016/j.jalgebra.2018.01.016
M3 - Article
AN - SCOPUS:85056317992
VL - 501
SP - 473
EP - 502
JO - Journal of Algebra
JF - Journal of Algebra
SN - 0021-8693
ER -
ID: 46234097