DOI

For a group G and R=Z,Z/p,Q we denote by GˆR the R-completion of G. We study the map Hn(G,K)→Hn(GˆR,K), where (R,K)=(Z,Z/p),(Z/p,Z/p),(Q,Q). We prove that H2(G,K)→H2(GˆR,K) is an epimorphism for a finitely generated solvable group G of finite Prüfer rank. In particular, Bousfield's HK-localisation of such groups coincides with the K-completion for K=Z/p,Q. Moreover, we prove that Hn(G,K)→Hn(GˆR,K) is an epimorphism for any n if G is a finitely presented group of the form G=M⋊C, where C is the infinite cyclic group and M is a C-module.

Язык оригиналаанглийский
Страницы (с-по)473-502
Число страниц30
ЖурналJournal of Algebra
Том501
DOI
СостояниеОпубликовано - 1 мая 2018

    Предметные области Scopus

  • Алгебра и теория чисел

ID: 46234097